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Transient homogeneous nucleation is studied in the limit of large critical sizes. Starting from pure mono-
mers, three eras of transient nucleation are characterized in the classic Becker-Döring kinetic equations with
two different models of discrete diffusivity: the classic Turnbull-Fisher formula and an expression describing
thermally driven growth of the nucleus. The latter diffusivity yields time lags for nucleation which are much
closer to values measured in experiments with disilicate glasses. After an initial stage in which the number of
monomers decreases, many clusters of small size are produced and a continuous size distribution is created.
During the second era, nucleii are increasing steadily in size in such a way that their distribution appears as a
wave front advancing towards the critical size for steady nucleation. The nucleation rate at critical size is
negligible during this era. After the wave front reaches critical size, it ignites the creation of supercritical
clusters at a rate that increases monotonically until its steady value is reached. Analytical formulas for the
transient nucleation rate and the time lag are obtained that improve classical ones and compare very well with
direct numerical solutions.

DOI: 10.1103/PhysRevE.71.021601 PACS numberssd: 82.70.Uv, 83.80.Qr, 05.40.2a, 05.20.Dd

I. INTRODUCTION

Homogeneous nucleation occurs in many examples of
first order phase transitionsf1g such as condensation of liq-
uid droplets from a supersaturated vapor, glass-to-crystal
transformationsf2g, crystal nucleation in undercooled liquids
f3g, and in polymersf4g, colloidal crystallizationf5g, growth
of spherical aggregates beyond the critical micelle concen-
tration sCMCd f6,7g, and the segregation by coarsening of
binary alloys quenched into the miscibility gapf8–10g. In
condensed systems, a long time elapses before the nucleation
rate sat which stable nucleii larger than the critical size are
generatedd reaches a steady state, therefore these systems
offer excellent opportunities to study time-dependent nucle-
ation f3g.

Understanding the kinetics of nucleation and growth be-
yond the determination of the steady-state nucleation rate is a
task of great importance and not yet completely accom-
plished. For example, it is desirable to obtain a simple
asymptotic description of the transient until the steady-state
nucleation stage sets in. Moreover, there is no clear distinc-
tion between nucleation and growth, and a unified theory of
both processes does not existf3g despite recent attempts at
bridging the gap between nucleation and late-stage coarsen-
ing theoriesf11–13g.

In this paper, we consider the problem of describing the
approach to steady-state nucleation within the classical
nucleation theoryf3g. Thus our starting point is the Becker-
Döring sBDd discrete kinetic model of nucleation and indefi-
nite growth of a stable phase from a metastable state
f3,14,15g. The BD model contains two kinetic rate constants
that are related to each other by assuming detailed balance.
To complete the description of the BD equationssBDEd, a
model for one of the rate constants, usually a discrete diffu-
sivity describing the rate at which a cluster loses one mono-
mer, is needed. In the classical theory, the discrete diffusivity
is given by the Turnbull-FishersTFd expression which as-
sumes that a monomer has to overcome an activation energy
barrier for its transfer across the interface of a cluster. The
TF discrete diffusivity is therefore proportional to the surface
area of the clusterf16g. Other models are selected so as to
yield the known expression for the adiabatic growth of a
nucleus of critical size by either diffusion or by heat transfer.
The discrete diffusivity of these later models is proportional
to the cluster radius.

No matter which discrete diffusivity is used, starting from
an initial condition of pure monomers surpassing the CMC,
we expect that cluster size increases and stable supercritical
nucleii are formed at anucleationrate that will eventually
become stationary at an exponentially small value. After the
stationary nucleation has set in, the supercritical clusters con-
tinue growing, and the discrete diffusivity of the BDE can be
ignored in the description of their growth, which is a pure
convection in the space of cluster size. For precipitation pro-
cesses, this will eventually result in late stage coarsening
which we will not study in the present paper.
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The small parameter that informs our asymptotic analysis
is e=kc

−1/3, wherekc is the number of monomers in the criti-
cal nucleus, a “large” quantity that ranges between 20 and
1000 for common materialsf3g. Using other small param-
eters, such as the supersaturation, yields particular cases of
our resultsscf. Chap. 2 by Neu and Bonilla in Ref.f4gd. The
analysis of the BDE in the limit ase→0 distinguishes three
well defined stages or eras in the approach to the stationary
nucleation rate. Starting from the initial state of pure mono-
mers, a continuous distribution of cluster sizes is established
at the monomer’s expense during the first era. During the
second era, the clusters grow to the critical size in such a
way that their size distribution is a traveling wave front in
size space. As this wave reaches the critical size, the forma-
tion of supercritical nucleii starts, nucleation isignited, and
the nucleation rate increases from zero to its stationary value
during the third era. We have obtained two different expres-
sions for the nucleation rateswhich is of paramount impor-
tance to compare with experimentsd: sId a general expression
in terms of the instantaneous location of the wave front and
its instantaneous width, which solve two given differential
equations, andsII d a more explicit description of the nucle-
ation rate in terms of the solution of the linearized wave front
position with an origin of time at the timetM needed for the
exact wave front to advance from pure monomers to a certain
near critical size. Numerical solution of the model confirms
all the theoretical predictions.

Most previous studies of transient nucleation considered
the Zeldovich-Frenkel equationsZFEd, which is a Fokker-
Planck-type equation resulting from taking the continuum
limit of the BDE f17g. Zeldovichf17g set the discrete diffu-
sivity equal to its value at the critical cluster size and used a
parabolic approximation for the variation of the free energy.
The resulting expression for the transient nucleation rate was
rather inaccuratef2g. Until the mid 1980s, work on the ZFE
was based on similarly uncontrolled approximationsf18g.
Some of them gave expressions for the nucleation rate and
time lag close to the values obtained by numerically solving
the BDE for particular parameter values, but were far off for
other parameter rangesf19g. Asymptotic theories for the ZFE
were elaborated laterf20–22g. There are two main differ-
ences between asymptotic results obtained for the discrete
BDE and those obtained for the continuum ZFE:sid the time
lags for transient nucleation are different, as explained by
Wu f19g, andsii d the width of the wave front and the time to
ignition are differentswider for the ZFEd. Nevertheless, other
magnitudes such as relaxation times and the stationary nucle-
ation rate are the same for asymptotic approximations of
both, the BDE and the ZFE. Thus our simplified theorysII d
yields expressions for the nucleation rate that are similar to
those found by Shneidmanf21g and by Shiet al. f22g, al-
though their time lags differ from ours, as one would expect
from Wu’s argumentsf19g. For large critical sizes, our ap-
proximationsId is better.

The rest of the paper is as follows. In Sec. II, we review
the Becker-Döring model for nucleation and growth of
spherical aggregates with the Turnbull-FishersTFd discrete
diffusivity f16g. The binding energy of the aggregate withk
monomerssk clusterd relative to isolated monomers in solu-
tion is sk−1d times the monomer-monomer bond energy plus

a term proportional to the surface area of the aggregate. Be-
yond a critical density no equilibrium size distribution exists
and the aggregates grow indefinitely. The main results of our
asymptotic analysis are derived in Sec. III and compared
with the numerical solution of the BDE with the TF discrete
diffusion coefficient describing devitrification of lithium di-
silicate glass. Our results compare favorably with previous
theories based on the ZFE, the continuum approximation of
the BDE. However, when compared with experimental data
for glass disilicate, the theoretical time lag is about 30 times
smaller. To improve the agreement with experiments, we
propose in Sec. IV a different discrete diffusion coefficient
selected so as to yield the known expression for the adiabatic
growth of a nucleus of critical size by heat transfer. The
asymptotic theory for the resulting BDE is similar to that
explained in Sec. III, and the resulting time lag is much
closer to experimental data. Section V compares our
asymptotic results for the transient nucleation rate and for the
number of supercritical clusters to previously known analyti-
cal formulassunfortunately all of them dealing with the con-
tinuum ZFE, not with the discrete BDE as ours dod f20–24g.
Technical matters are relegated to the Appendixes.

II. KINETIC EQUATIONS AND STATIONARY SOLUTIONS

The model presented here is nucleation in a lattice in
which there are many more binding sites,M, than particles,
N f7g. We shall consider the thermodynamic limit,N→`,
with fixed particle density per site,r;N/M. Let pk be the
number of clusters withk particles or, in short,k clusters, and
let rk;pk/M be the density ofk clusters. Note that the num-
ber densities per site,r andrk, are both dimensionless. Num-
ber densities per unit volume are obtained dividingr andrk
by the molecular volume,v=V/M. Particle conservation im-
plies that the total particle densityr is constant:

o
k=1

`

krk = r. s1d

In the Becker-Döring kinetic theory of nucleation, ak cluster
can grow or decay by capturing or shedding one monomer at
a time. Thenf7g

ṙk = jk−1 − jk ; − D−jk, k ù 2, s2d

jk = dkhesD+«kd/kBTr1rk − rk+1j. s3d

The monomer densityr1 can be obtained from the conserva-
tion identitys1d that relates it to the other cluster densities. In
these equations,ṙk=drk/dt andD±uk; ± fuk±1−ukg are finite
differences.t, dk and jk are nondimensional.t and dk are
related to the dimensional timet* and decay coefficientdk

* as
follows:

t = Vt* , dk =
dk

*

V
. s4d

Here the factorV has units of frequency, it depends on the
particular model we choose fordk, and will be determined
later. jk is the net rate of creation of ak+1 cluster from ak
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clusterstheflux in size spaced, given by the mass action law.
In Eq. s3d we have made the detailed balance assumption to
relate the kinetic coefficient for monomer aggregation to that
of decay of ask+1d cluster,dk. This implies that the equilib-
rium size distribution solvingjk=0 has the form

r̃k = r1
k expS «k

kBT
D . s5d

In Eqs.s3d ands5d, «k is the binding energy of ak cluster,
required to separate it into its monomer components. Then
the total energy measured with respect to a configuration in
which all clusters are monomers is −ok=2

N pk«k. For spherical
aggregates,

«k = Ssk − 1da −
3

2
ssk2/3 − 1dDkBT. s6d

This formula holds fork@1, but we shall use it for allk
ù1. akBT is the monomer-monomer bonding energyf6g
which, in the case of precipitation of crystals from a solution
or segregation by coarsening of binary alloys, may depend
on the particle densityr svolume fractiond through
some empirical formulas f14g. In Eq. s6d, s
=2gss4pv2/3d1/3/ skBTd, wheregs andv=V/M are the inter-
facial free energy per unit areassurface tensiond and the mo-
lecular volume, respectively. Note thata and s are both
dimensionless. The correction 3skBT/2 in Eq. s6d ensures
that«1=0, and it improves the agreement between the nucle-
ation rate obtained from the BDE and experimentsf19g.
More precise atomic models were proposed by Penroseet al.
f14g.

Equationss1d–s3d ands6d and a given discrete diffusivity
dk form a closed system of equations that we can solve for an
appropriate initial condition. If initially only monomers are
present, we haver1s0d=r, andrks0d=0 for kù2. Before we
obtain formulas for the kinetic coefficientdk, we shall recall
the more salient features of the equilibrium size distribution.

A. Equilibrium size distribution

The equilibrium distributions5d satisfiesjk=0 and it can
be written as

r̃k = r1e
−gk, s7d

gk ; − sk − 1dln r1 −
«k

kBT
=

3

2
ssk2/3 − 1d − sk − 1dlnsear1d,

s8d

wheregk is theactivation energy, equivalently given by

gk = sk − sk − 1dw, sk =
3

2
ssk2/3 − 1d sk ù 1d, s9d

w = lnsear1d. s10d

Heres1=0=g1. Assumingk@1, gk achieves its global maxi-
mum gm=skc

2/3/2+skc
−1/3−3s /2 at the critical size

k = kc ; Ss

w
D3

. s11d

Equations9d can be rewritten as

gk , skc
2/3H3

2
S k

kc
D2/3

−
k

kc
J + skc

−1/3 −
3s

2
. s12d

gk/gm as a function ofk/kc is depicted in Fig. 1sad.
Rewriting the fluxs3d in the BDEs in terms of the activa-

tion energy, we obtain

jk = dkhse−D+gk − 1drk − D+rkj. s13d

Equations2d is a spatially discrete Smoluchowski equation
with diffusion coefficientdk and drift velocity

vk = dkse−D+gk − 1d. s14d

Notice thatvk,0 for an activation energy that increases with
k andvk.0 for decreasinggk. Hence,gk indicates how the
discrete advectionvk transports the clusters in size space:
subcritical clusters shrink as time elapses while supercritical
clusters grow with time.

For the equilibrium densitiess7d, the conservation identity
s1d becomes

ear = o
k=1

`

ksear1dke−sk = o
k=1

`

kekw−sk. s15d

This series converges forear1=ewø1 swø0d, and diverges
for ear1.1 sw.0d. At the critical micelle concentration
sCMCd, r1=e−a sw=0d, we obtain the critical density above
which equilibrium is no longer possible,

FIG. 1. sad Scaled activation energygk/gm as a function of the
scaled sizek/kc. sbd Scaled dimensionless densityr =rea as a func-
tion of the scaled dimensionless monomer densityr1=r1e

a for the
equilibrium distributionssolid lined. Data correspond to liquid iron
at maximum undercoolingsdot-dashed lined, whereas for disilicate
glass,r<r1 ssolid lined.
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earc = 1 +o
k=2

`

ke−sk. s16d

For r.rc, the BD kinetic equations predict phase segrega-
tion, i.e., indefinite growth of ever larger clusters.

B. The controlling parameters

The simplest nucleation problem consists of solving the
BD equationss1d, s2d, and s13d, with dimensionless activa-
tion energygk=sk−sk−1dw, discrete diffusivitydk sto be
chosen laterd and initial conditions

r1s0d = r, r2s0d = r3s0d = ¯ = 0. s17d

The only parameters left in this initial value problem arer
and s. r controls the long-time behavior of the BDE: Ifr
ørc given by s16d, rkstd approach their equilibrium values
s7d, with monomer densityr1 that solves Eq.s1d:

rea = fsr1e
a;sd ; o

k=1

`

ksr1e
adke−sk. s18d

The graph of this function is either the solid line or the
dashed line in Fig. 1sbd. If r.rc, cluster sizes grow indefi-
nitely whereas their density becomes small. Thus there re-
mains a residual monomer concentration whose density
r1e

a→1 ast→`. Summarizing, the union of solid or dashed
lines in Fig. 1sbd and the vertical liner1e

a=1 for r.rc
represents the long-time limit of the monomer concentration
as a function ofr.

Let us identify the controlling parametersr and s in a
physical system undergoing homogeneous nucleation. A
good experimental example is the transformation of certain
silicate glasses to crystalssdevitrificationd f3g. In particular,
abundant data exist for lithium disilicate and we have com-
piled in Table I appropriate values of parameters character-
izing nucleationf2g. In disilicate, the free energy per mol-
ecule of the crystal phase in the activation energys9d is
proportional to the undercooling

w =
DSfsTm − Td

NAkBT
, s19d

whereTm is the melting temperature,DSf is the molar en-
tropy of fusion, andNA is Avogadro’s number. The dimen-
sionless densityr=ews0d can be extracted from Eq.s19d as
explained in Sec. III. In energy units, the activation free en-
ergy is kBTgk=gs4pa2−kBTwk, wherea is the radius of a
sphericalk cluster. From the expression for the volume of
this cluster,kv=4pa3/3 sv is the molecular volumed, we
obtaina=f3v / s4pdg1/3k1/3, and therefore

kBTSgk − w +
3s

2
D = gss4pd1/3s3vd2/3k2/3 − DSfsTm − Tdk/NA.

s20d

Comparing Eq. s20d with Eq. s9d yields s
=s32pv2/3d1/3gs/ skBTd, and the critical size

TABLE I. Data for lithium disilicate glass.

Parameter Symbol Value

Melting temperature Tm 1300 K

Entropy of fusion DSf 40 J mol−1 K−1

Surface tension gs 0.15 J/m2

Preexponential diffusivity D0 23109 m2 s−1

Activation energy for diffusion Q 440 kJ/mol

Molecular volume v 10−28 m3

TF time scales703 Kd VTF
−1 0.613 h

Heat capacity per unit volume rmc 106 J m−3 K−1

Thermal conductivitys703 Kd rmck 3.96310−18 J m−1 s−1 K−1

Thermally-driven-growth time scales703 Kd VTDG
−1 6.196 h

Critical sizes703 Kd kc 18

Undercoolings703 Kd w̃ 4.087

Dimensionless surface tensions703 Kd s 10.74

Dimensionless free energy barriers703 Kd gm= s/2kc
2/3− 3s/2 +w̃ 25.177

TF time scales820 Kd VTF
−1 0.0478 s

Thermal conductivitys820 Kd rmck 1.84310−13 J m−1 s−1 K−1

Thermally-driven-growth time scales820 Kd VTDG
−1 0.48 s

Critical sizes820 Kd kc 34

Undercoolings820 Kd w̃ 2.817

Dimensionless surface tensions820 Kd s 9.207

Dimensionless free energy barriers820 Kd gm= s/2kc
2/3− 3s/2 +w̃ 38.181
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kc
1/3 = S32pv2

3
D1/3 gsNA

DSfsTm − Td
. s21d

The other parameters in Table I will be used later to model
the discrete diffusivity in the BDE. We observe that the criti-
cal size increases with temperature:kc=18 at 703 K andkc
=34 at 820 K. For other materials, such as undercooled liq-
uid metals, critical sizes can be rather large: liquid iron at
maximum undercooling haskc=494, whereaskc=2253 for
liquid rutenium at maximum undercoolingf3g.

C. Equivalent Becker-Döring system

As they stand, the BDE are rather stiff and hard to solve
numerically. For example, at equilibrium, Table I indicates
that rkc

/r1=e−gm−w̃<e−25.2−4.1<2310−13 for disilicate glass
at 703 K, andrkc

/r1<1.6310−18 for disilicate glass at
820 K. This motivates the following change of variable

rk = r1e
−gksk = e−aekw−sksk, s22d

according to Eq.s10d. Note thatsk=1 in equilibrium. Since
g1=0, this equation implies

s1 ; 1, s23d

for all t. For the initial conditions17d, ews0d−a=r1s0d=r, and
the conservation identitys1d becomes

ews0d = ew + o
k=2

`

kekw−sksk, s24d

in which we have used Eq.s22d. In terms of thesk, the flux
can be written as

jk = dk expfsk + 1dw − sk+1gssk − sk+1d, s25d

and the BDEs2d and s13d become

ṡk + ukssk+1 − skd = − kẇsk + dk−1ssk−1 − 2sk + sk+1d, s26d

for kù2. Here,

uk = dk−1 − dke
w−D+sk. s27d

The termukD+sk in Eq. s26d representsdiscrete advection,
with a drift velocity uk=−vk+sdk−1−dkd,−vk, which is es-
sentially minus the drift velocity in the original BDE fork
@1. Thus the advection in Eq.s26d climbs upthe activation
energy barrier, from small values ofgk to large ones.

In summary, the transformed nucleation initial-boundary
value problem consists of the balance equationss26d, the
particle conservation equations24d, the boundary condition
s23d, s1=1, and initial conditionssks0d=0 for all kù2. Its
solution giveswstd andskstd for all kù2 and allt.0.

D. Stationary solution

The stationary solution of the BDE has a flux independent
of cluster size, so thatjk=dk expfsk+1dw−sk+1gssk−sk+1d= j ,
from which ssk+1−skd=−j expfsk+1−sk+1dwg /dk, and there-
fore

sk = 1 − jo
l=1

k−1
expfsl+1 − sl + 1dwg

dl
, s28d

for kù2. Sinces̀ =0, j can be obtained from this expres-
sion in terms of an infinite series

j =
1

ol=1

`
expfsl+1 − sl + 1dw − ln dlg

. s29d

Substituting this expression back into Eq.s28d, we obtain

sk = 1 −
ol=1

k−1
expfsl+1 − sl + 1dw − ln dlg

ol=1

`
expfsl+1 − sl + 1dw − ln dlg

. s30d

Then,rk=r1e
−gksk.

E. Turnbull-Fisher discrete diffusivity

To solve the BDE, we need to establish reasonable models
of the kinetic coefficientdk sdiscrete diffusivityd for the de-
cay of thesk+1d cluster. A classical formula due to Turnbull
and Fisherf16g applies to spherical clusters whose growth is
limited by the reaction rate at their boundary:dk

* is the prod-
uct of the number of active sites on the aggregate times the
molecular jump ratef2,16g

dk
* = 4k2/3eD+gk/2

6D

l2 = Vk2/3eD+gk/2, V−1 =
v2/3

24D
;

v2/3eQ/sRTd

24D0
.

s31d

HereD=D0e
−Q/sRTd is the diffusion coefficient in the liquid,

Q is the activation energy for diffusionssee Table Id, R
=kBNA is the gas constant, andl=v1/3 sv is the molecular
volumed. If we nondimensionalize time as in Eq.s4d with
this definition ofV, we obtain

dk = k2/3eD+gk/2. s32d

III. ASYMPTOTIC THEORY OF TRANSIENT
HOMOGENEOUS NUCLEATION WITH THE TURNBULL-

FISHER DIFFUSIVITY

In this section, we shall interpret the numerical solutions
shown in Figs. 2–4 by using singular perturbation methods.
Our theory will be described using the TF discrete diffusivity
s31d and compared to numerical solution of the BDE for the
crystallization of disilicate glass at different undercoolings.

A. Initial transient

Initially, r1s0d=r and there are no multiparticle aggre-
gates. There is an initial transient stage during which dimers,
trimers, etc. form at the expense of the monomers. This ini-
tial stage is characterized by the decay of the chemical driv-
ing forcew=a+ln r1 to a quasi-stationary valuew̃, given by
Eq. s19d in the case of disilicate glass, and the emergence of
a continuum size distribution. Knowing this,we choose the
initial chemical driving forcews0d so that the quasistation-
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ary value w̃ given by Eq. (19) is attained at the end of the
initial stage.

In materials such as disilicate glass at the temperatures we
consider, the critical size is relatively small. Thenws0d< w̃,
and the initial stage is very short. As the critical size in-
creasessas in the case of undercooled liquid metalsd, ws0d
may differ appreciably fromw̃, and the initial stage lasts
longer. However, even in such cases, the duration of the ini-
tial stage,t`, is negligible if we are interested in the overall

duration of the transient stage to quasi-stationary nucleation.
We shall show later that the duration of the initial stage com-
pared to the duration of the overall transient is of orderkc

−2/3,
a very small quantity for materials with large critical sizes.

B. Wave front advancing towards the cluster of critical
size

After the first era, clusters of increasing size are formed.
For sufficiently small clusters, the continuum size distribu-
tion approaches the equilibrium distribution withw=w̃. This
situation can be observed as an advancing wave front in the
variableskstd, satisfyingsk,1 sequilibriumd behind the front
andsk,0 ahead of the front. This second era is described by
Eqs.s24d–s27d with w=w̃ and ẇ=0. The critical sizes,

kc = Ss

w̃
D3

, s33d

for disilicate glass are relatively small, between 10 and 50,
but they are large for undercooled liquid metals, generally
between 100 and 1000. Hence we shall use as a small gauge
parameter

e =
w̃

s
. s34d

Our asymptotic analysis will be carried out in the limite
→0, and thereforekc=e−3→`. Thendk, uk, andsk in Eqs.
s32d, s26d, ands27d are smooth functions ofk.0:

dskd = k2/3efD+sskd−w̃g/2, sskd =
3

2
ssk2/3 − 1d, s35d

uskd = dsk − 1d − dskdexpfw̃ − ssk + 1d + sskdg. s36d

1. Position of the wave front

In the numerical solutions shown in Fig. 2sad, the graphs
of sk vs k at fixed time have clear inflection points at somek,

FIG. 2. sad Comparison ofsnstd evaluatedsat different timesd
from the numerical solution of the discrete equationss26d to the
asymptotic results54d ssolid lined. sbd KsTd calculated from Eq.s41d
with Ks0d=e3 ssolid lined is compared to the numerically obtained
position of the wave front. Data correspond to disilicate glass at
820 K. All variables are written in dimensionless units.

FIG. 3. sad Evolution of the dimensionless flux at critical size
jstd, and sbd number of clusters surpassing critical sizeNcstd as a
function of dimensionless time for disilicate glass at 820 K,kc

=34. Solid lines correspond to numerical results, dashed lines to the
approximation given by Eq.s58d, dot-dashed lines to the lineariza-
tion approximations67d, and dotted lines to the approximationsC8d
corresponding to linearizing the equations forKsTd andAsTd as in
Appendix C.

FIG. 4. Same as in Fig. 3 for disilicate glass at 703 K,
kc=18.
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wheresk<1/2. The inflection point is taken as theposition
of the wave front. In the continuum model, the front position
k=kfstd is a smooth function which obeys

k̇f = uskfd. s37d

Scalingkf as

kf =
K

e3 s38d

ssame scaling askc=e−3d, the right-hand side of Eq.s37d
becomes

uskfd =
1

e2UsKd + Osed, s39d

UsKd = 2K2/3 sinhS w̃

2
sK−1/3 − 1dD . s40d

Equations37d can be rewritten as

dK

dT
= UsKd ; 2K2/3 sinhS w̃

2
sK−1/3 − 1dD , s41d

provided we define the slowly varying time scaleT=et, and
take the limit ase→0. Figure 2sbd compares the position of
the wave front calculated by solving Eq.s41d with Ks0d=e3

to the value obtained from the numerical solution of Eq.
s26d. Note that the solution of Eq.s41d presents a time shift
with respect to the numerical solution of the discrete model.
This time shift reflects the breakdown of the continuum limit
as K→0, due to discreteness, and also the transient inwstd
before it settles tow̃. If the solution of Eq.s41d is forced to
agree with the numericalKsTd when the latter is, say, 0.1, the
comparison fares much better.

2. Shape of the wave front

The leading edge of the wave front is a layer centered at
KsTd in which sk decreases from 1 to 0 ask increases through
it. The continuum representation ofsk in this layer is

sk = SsX,T;ed, s42d

whereS is a smooth function of its arguments andX is the
scaled displacement from the wave front location atk
=K /e3, i.e.,

X = e pSk −
K

e3D . s43d

The scaling exponentp, presumably with 0,p,3, is to be
determined. The descriptions42d and s43d should hold ase
→0 with X fixed, so that the layer thickness scales ase−p.
Substituting Eq.s42d into Eq. s26d yields

e
]S

]T
− e p−2dK

dT

]S

]X
+ uS K

e3 +
X

e pDfSsX + e p,T;ed − SsX,T;edg

= dS K

e3 +
X

e pDfSsX − e p,T;ed − 2SsX,T;ed + SsX

+ e p,T;edg. s44d

Carrying out the straightforward expansion in powers ofe,
Eq. s44d adopts the following asymptotic form

e
]S

]T
+ e p−2FUsKd −

dK

dT
G ]S

]X
+ eU8sKdX

]S

]X

= e 2p−2FK2/3ew̃sK−1/3−1d/2 −
1

2
UsKdG ]2S

]X2 + ose 2p−2d,

s45d

ase→0 with X, K fixed. HereUsKd is given by Eq.s40d. To
obtain Eq.s45d, we have used Eqs.s38d and s39d:

uSK + e 3−pX

e 3 D = e−2UsK + e 3−pXd + Osed

= e−2UsKd + e1−pU8sKdX + ose1−pd.

The dominant balance of diffusion and convection in Eq.
s45d yields 2p−2=1, orp=3/2. Hence Eq.s43d yields

X = e 3/2Sk −
K

e 3D , s46d

and the limit of Eq.s45d ase→0 is

]S

]T
+ U8sKdX

]S

]X
= DsKd

]2S

]X2 , s47d

DsKd ; lim
e→0

Fdse−3Kd −
1

2
use−3KdGe 2

= K2/3 coshS w̃

2
sK−1/3 − 1dD . s48d

Had we carried out the same analysis for the ZFE, we would
have foundDsKd,dse−3Kde. This would have resulted in a
wider wave front and a longer time to ignition than those
described below.

3. Flux and wave front width

Besides determining the shape of the wave front near its
location, Eq.s47d yields the behavior of the fluxscreation
rate of clusters larger thankd jk neark=kf. If we substitute
Eqs.s32d, s42d, ands46d into Eq. s25d:

jk = − dke
sk+1dw̃−sk+1D+sk

= − k2/3 expFSk +
1

2
Dw̃

−
3s

4
fsk + 1d2/3 + k2/3g +

3s

2
GD+sk,

we obtain

jk , e−1/2K2/3e3w̃/s2ed

3expF−
GsKd

e3 −
G8sKdX

e3/2 −
G8sKd

2
−

G9sKd
2

X2G ]S

]X
.

s49d

Here
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GsKd ; w̃S3

2
K2/3 − KD s50d

is a scaled version of the activation energys9d.
Since jk is proportional to]S/]X, it is convenient to dif-

ferentiate Eq.s47d with respect toX in order to obtain an
equation forJ;−]S/]X,

]J

]T
+ U8sKd

]sXJd
]X

= DsKd
]2J

]X2 . s51d

Notice thatJ is locally conserved, and the following integral
conservation identity holds:

1 = − fSg−`
` = −E

−`

` ]S

]X
dX=E

−`

`

JdX. s52d

Equations51d has Gaussian solutions satisfying Eq.s52d,

JsX,Td =
1

2ÎpAsTd
expF−

X2

4AsTdG , s53d

which yields

SsX,Td =
1

2
erfcF X

2ÎAsTd
G s54d

for the wave front profile. Inserting Eq.s53d in Eq. s51d, we
find the following equation forAsTd.0:

dA

dT
− 2U8sKdA = DsKd. s55d

SinceKsTd is an increasing function, we can expressA as a
function of K. Inserting Eq.s41d in Eq. s55d, we get

dA

dK
−

2U8sKd
UsKd

A =
DsKd
UsKd

. s56d

Direct integration of this equation yields

A = qU2 + U2E D
dK

U3 =

3K4/3S1 + q sinh2F w̃sK−1/3 − 1d
2

GD
2w̃

,

s57d

in which q is an arbitrary constant.
After insertion of Eq.s53d, the flux s49d becomes

j k ,
K2/3e3w̃/s2ed

2ÎepA
expH−

GsKd
e3 −

G8sKdX
e3/2 −

G8sKd
2

− FG9sKd
2

+
1

4A
GX2J . s58d

HereK=KsTd andA=AsTd are found by solving the differ-
ential equationss41d and s55d with initial conditions Ks0d
=e3 andAs0d=3e4/ s2w̃d, respectively. We have to setq=0 in
Eq. s57d for A would become exponentially large asK=e3

→0 otherwise. AsT→`, K→1 and A→−Ds1d / f2U8s1dg.
The definitions s40d and s48d of UsKd and DsKd imply
U8s1d=−w̃ /3, Ds1d=1. Hence,A→3/s2w̃d as T→`, or as
K→1 in Eq. s57d. The definition s50d of GsKd implies

Gs1d=w̃ /2, G8s1d=0, andG9s1d=−w̃ /3. Hence, the limit as
T→` of the creation rates58d is

jk , j` ;Î w̃

6pe
expS−

w̃

2e3 +
3w̃

2e
D . s59d

Notice that the terms proportional toX and X2 have disap-
peared from this expression and thereforej` is asymptoti-
cally uniform forX=Os1d. Equations59d is the classical qua-
sisteady nucleation rate of supercritical clusters due to
Zeldovichf17g, and it can be directly obtained from the sta-
tionary flux s29d in the limit ase→0.

C. The nucleation rate of supercritical clusters

Let us now study the transient creation rate, in whichj
; jkc

increases from 0 to the steady Zeldovich values59d. As
we have just seen, our theory predicts thatthe wave front
profile is given by Eq. (54) , where KsTd and AsTd are solu-
tions of Eqs. (41) and (55), respectively. The flux of clusters
with sizes larger than k is then given by Eq. (58). Settingk
=kc=e−3 scritical sized and X=(1−KsTd) /e3/2 in this equa-
tion, we obtain the nucleation rate predicted by our theory,
jstd. Its integral over time yields the number of supercritical
clusters,Ncstd. We shall consider now a different and more
explicit approximation of these results.

1. Linearization of the wave front speed about the critical size

Let us fix k=kc=e−3 scritical sized in the definitions46d
of X:

X =
1 − K

e 3/2 ; k. s60d

We now setX=k in Eq. s58d and perform the limit ase
→0 with k fixed. The result is

j , j`e−w̃k2/6−e3/2w̃k/6 , j`e−w̃k2/6, s61d

provided we use the limiting stationary values4Ad−1

=−G9s1d /2.
The transient turns on whenk;s1−Kd /e3/2=Os1d. Since

Us1−e3/2kd,e 3/2w̃k /3, the wave front equations40d yields

dk

dT
= −

w̃

3
k, s62d

ase→0. The solution of this equation is

k = kMe−w̃ew̃sT−TMd/3 = kMe−st−tMd/s2td, s63d

t−1 =
2

3
w̃e. s64d

It is convenient to choosekM as the value ofk at which the
flux j reaches its inflection point. Then we may consider that
the wave front has ignited the nucleation of supercritical
clusters. Straightforward use of Eqs.s61d ands62d shows that

kM =Î6

w̃
. s65d
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Moreover,TM =etM is thetime to ignition, at which the wave
front KsTd reaches the valueK=1−e 3/2kM. From Eq.s41d,
we obtain

tM = t` +
3

2w̃e5lnSw̃s1 − e 3d2

6e 3
D

+E
e 3

1−e 3/2kM 3
w̃

3K2/3 sinhF w̃

2
sK−1/3 − 1dG +

2

K − 14dK6 ,

s66d

where t` is the duration of the initial stage. We could have
expanded the integral in this expression, but Eq.s66d is bet-
ter suited for numerical calculation. The nucleation rate is
found by inserting Eq.s63d in Eq. s61d:

j , j` expf− e−st−tMd/tg, s67d

in which a term of ordere 3/2 has been ignored in the expo-
nential.

Integrating jstd over time, we find the number of super-
critical clusters as a function of time. In the limit ast→`,
this number isNcstd, j`st−ud, where the time lagu is ap-
proximately given byu= tM +tg+tE1setM/td, or

u = t` +
3

2w̃e5lnS w̃s1 − e 3d2

6e 3
D + g + tE1setM/td

+E
e 3

1−e 3/2kM 3
w̃

3K2/3 sinhF w̃

2
sK−1/3 − 1dG +

2

K − 14dK6 ,

s68d

where g=0.577215. . . is Euler’s constant andE1sxd is an
exponential integral, see the derivation in Appendix B. The
time lagu can be directly compared to experimental values
f3g.

2. Comparison between different approximations

Figure 3sad comparesjstd calculated from the numerical
solution of the BDE for devitrification of disilicate glass at
820 K, from Eqs.s67d ands66d with t`=0, and from Eq.s58d
with X=(1−KsTd) /e 3/2. We find that the more precise ex-
pression, Eq.s58d, captures better the width and location of
the transition region betweenj =0 and j = j`, as compared
with the simple approximation given by Eqs.s67d and s66d.
Both approximations present a small overshoot and yield a
smaller time lagu than that obtained from the numerical

solution of the BDE. The overshoot decreases as the critical
size increases. Another approximation consists of linearizing
the equations forKsTd and AsTd about the critical sizeK
=1 as suggested in Ref.f24g and further explained in Appen-
dix C. This latter approximation is the worst one. This is not
surprising as such approximation provides the same result
for both the discrete BDE and the continuum ZFE.

For disilicate glass at a lower temperature of 703 K, the
critical size is smaller and our approximations deviate more
from the numerical solution of the BDE, as shown in Fig.
4sad. Integrating jsTd over time, we find the number of su-
percritical clusters as a function of time,Ncstd, which is de-
picted in Figs. 3sbd and 4sbd. At 703 K, the numerical solu-
tion of the BDE with the TF diffusivity yields a time lagu
=2.6. This value is close to those provided by the lineariza-
tion approximation,u=2.2, and by Eq.s58d, u=2.3. Thus
these analytical approximations to the numerical solution are
reasonably good even for a relatively small critical size.
However,u=2.6 gives 1.6 h according to Table I, whereas
the experimentally measured time lag is about 50 h; cf. Fig.
5 of Ref. f3g. This discrepancy is due to having used the TF
discrete diffusivity, which yields an excessively small time
unit, as shown in Table I.

IV. TEMPERATURE DRIVEN GROWTH OF THE
NUCLEUS

To improve agreement with experiments, we need a dis-
crete diffusivity different from the TF one. We shall no
longer assume that cluster size changes due to the activated
transfer of a monomer through the cluster surface as in the
TF theory. Instead, we shall assume that the discrete diffu-
sivity in the BDE agrees with an adiabatic temperature
driven growth of the nucleus. This yields a different formula
for dk which, presumably, is not physically justified for very
small cluster sizes. Nevertheless, the numerical solution of
the BDE corresponding to thermally driven growth provides
a time lag which is much closer to the experimentally mea-
sured value for disilicate glass than the TF diffusivity.

A. Discrete diffusivity

Let us assume that there is a nonuniform temperature field
about a spherical crystal of radiusa sk clusterd that is grow-
ing at the expense of the surrounding glass. Equations21d
shows that a nucleus of critical size grows ifsTm−Td de-
creases. The same equation yieldssTm−Td at the surface of a
critical nucleus withk monomers:

Tm − T* = S32pv2

3
D1/3gsNA

DSf
k−1/3. s69d

At the surface of the crystal,T=T*skd, whereas far from it
there is a smaller temperature,T=T`. Heat transfer from
crystal to glass, −rmck4pa2]Tsa,td /]r sk, c andrm are ther-
mal diffusivity, specific heat and mass density, respectivelyd,
should equal the increase of energy due to crystal growth,
T`DSfNA

−1dk/dt* . We find
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dk

dt*
= U −

rmckNA

T`DSf

]T

]r
U

r=a
4pa2. s70d

The temperatureTsrd is the solution of Laplace’s equation
with boundary conditionsT=T* at r =a, andT=T` infinitely
far from the nucleus. The corresponding solution isT=T`

+sT* −T`da/ r, which, together with Eq.s70d, yield

dk

dt*
= 4p

rmckNA

T`DSf
sT* − T`da. s71d

Using Eq.s69d and the expressions for the radiusa and Eq.
s21d for the critical sizekc, we obtain

dk

dt*
=

2s6p2vd1/3rmckNAsTm − T`d
T`DSf

sk1/3 − kc
1/3d. s72d

As k→`, the flux s13d in the BDE becomesjk
* ,dk

*se−]gk/]k

−1drk swritten in dimensional unitsd, and therefore

dk

dt*
, dk

*sew−sk−1/3
− 1d = dk

*e−sk−1/3
sew − esk−1/3

d,

Using Eq.s11d, this equation can be written as

dk

dt*
, dk

*sewf1−skc/kd1/3g − 1d. s73d

Comparing Eqs.s72d and s73d, we obtain

dk
* = Vk1/3

wF1 −Skc

k
D1/3G

ewf1−skc/kd1/3g − 1
, V =

2s6p2vd1/3rmckkBNA
2

sDSfd2 .

s74d

As before, we shall absorb the constantV in the definition of
time according to Eq.s4d, which yields the following value
of the dimensionless discrete diffusivity:

dk = k1/3

wFSkc

k
D1/3

− 1G
1 − ewf1−skc/kd1/3g

. s75d

Here we shall assume that the thermal diffusivity follows the
same Arrhenius law as the diffusion coefficient in the liquid
k=D0e

Q/sNAkBTd; see Keltonet al. f2g. With this choice of
discrete diffusivity, a numerical solution of the BDE yields a
time lag ofu=46.5 h at 703 K compared tou=1.6 h previ-
ously obtained using the TF diffusivity. The experimentally
measured time lag is 50 h, as shown in Fig. 5, p. 94 of
Kelton’s reviewf3g. Thus we feel justified in using our for-
mula s74d to solve the BDE for disilicate glass.

B. Asymptotic theory

We have to repeat the arguments given in Sec. III using
the discrete diffusivitys74d instead of the TF expression.
One important difference is that time needs to be rescaled as
T=e2t instead ofT=et. Here we shall also use the symbolT
for the slow time scale, but remembering thatTTDG=e2t sfor
thermally driven growthd instead ofTTF=et sTF diffusivityd.

When necessary, we shall add the labels TF or TDG to the
corresponding variables. After the initial discrete stage, our
asymptotic theory yields the following results for tempera-
ture driven cluster growth, applicable to devitrification of
disilicate glass.

The wave front profileSsX,Td, with X=fk−e−3KsTdge 3/2

andT=e 2t, is given bySsX,Td=s1/2derfc(X/ f2ÎAsTdg). The
front location and its width solve

dK

dT
= UsKd ; w̃s1 − K1/3d, s76d

dA

dT
− 2U8sKdA = DsKd ;

w̃

2
s1 − K1/3dcothF w̃

2
sK−1/3 − 1dG ,

s77d

with initial conditionsKs0d=e3, As0d=e3/2. The latter con-
dition corresponds toq=0 in Eq. s57d. ThenA,K /2 asK
→0+, which yields the initial condition forA if Ks0d=e3. In
Eqs.s76d and s77d, UsKd andDsKd are defined by

UsKd = lim
e→0

FeuS K

e3DG, DsKd = lim
e→0

FdS K

e3D −
1

2
uS K

e3DGe.

Instead of Eq.s49d, we get the following approximation for
the flux near the wave front:

jk ,
e1/2w̃s1 − K1/3de3w̃/s2ed

f1 − e−G8sKdgÎ4pA
expH−

GsKd
e3 −

G8sKdX
e3/2 − G8sKd

− FG9sKd
2

+
1

4A
GX2J , s78d

in which GsKd=w̃s3K2/3/2−Kd and Eq.s53d has been used.
Inserting X=f1−KsTdg /e3/2 in this equation, we obtain the
nucleation rate:

jsTd
j`

,Î 3

2Aw̃

UsKd

1 − e−G8sKd

3expH w̃

2e3 −
GsKd + G8sKds1 + e3 − Kd

e3

− FG9sKd
2

+
1

4A
G s1 − Kd2

e3 J , s79d

j` =Î ew̃

6p
expS3w̃

2e
−

w̃

2e3D . s80d

The simplest approximation for the nucleation rate and
the time lag yields

j = j` exph− e−st−tMd/tj, s81d

tM =
1

w̃e 2E
e 3

1−e 3/2kM dK

1 − K1/3

=
3

2w̃e 2HlnS 3w̃

2e 3D − 3 + 2S6e 3

w̃
D1/2J + Osed, s82d
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tTDG
−1 =

2w̃e 2

3
= etTF

−1, s83d

u = tM + fg + E1setM/tdgt

=
3

2w̃e 2HlnS 3w̃

2e 3D − 3 +g + 2S6e 3

w̃
D1/2J + Osed.

s84d

To obtain these expressions, we have followed the same pro-
cedure as in the case of the TF diffusivity. In particular, Eqs.
s61d–s63d hold with T=e 2t, tM given by Eq.s82d andt given
by Eq. s83d.

Figure 5 compares the numerical solution of the BDE
ssolid lined for devitrification of disilicate glass at 820 K
scritical sizekc=34d with the more accurate asymptotic for-
mulas: Eqs.s81d–s83d sdot-dashed lined and its linearization
about the critical size, Eqs.s76d–s79d sdashed lined. Simi-
larly, Fig. 6 corresponds to 703 K. We observe that our two
approximations, Eqs.s76d–s79d, and Eq.s81d, describe quite
accurately the numerical solution. Notice that our asymptotic
formulas for thermally driven growth yield worse approxi-
mations to the numerical solution of the BDE than in the
case of the TF diffusivity. The stationary nucleation rate is
approximated less well byj` in the case of thermally driven
growth because of the avoidable singularity ofdk at the in-
tegerkc, which is slightly different frome−3.

V. DISCUSSION

In this paper, we have studied the case of phase segrega-
tion resulting whenr.rc. Previously, other authors had car-
ried out asymptotic studies of the BDE in the simpler case of
subcritical density,r,rc, in which initial conditions of only

monomers, or more general ones, evolve towards the equi-
librium distribution. In many cases of polynomial growth for
dk, equilibrium is reached via a wave front profile forsk,
which is similar to Eq.s54d with A~Kd, and K~Tm, for
appropriate positived and m; see Ref.f25g and references
cited therein. This advancing and widening wave front leaves
in its wake the equilibrium size distribution.

In the more complex case of phase segregation and indefi-
nite aggregate growth considered in this paper, a quasicon-
tinuum wave front ofsk emerges after a short transient which
is governed by the discrete BDE. After this, the leading edge
of the wave front advances towards the critical size, and it
slows down and stops there, leaving behind it a quasi-
equilibrium state. The arrival of the wave front to the critical
size marks theignition of nucleation of supercritical clusters,
which ends when the stationary Zeldovich rate is reached.
Previous asymptotic theories have been derived for the con-
tinuum ZFE, not the discrete BDE, and thus their results
systematically misrepresent two things:sid the time lags for
transient nucleation, as explained by Wuf19g, and sii d the
width of the wave front and the time to ignition in the nucle-
ation rate. The latter discrepancies occur because the diffu-
sion coefficient appearing in the continuum equation for the
wave front satisfiesDBDEsKd=DZFEsKd−UsKd /2, and there-
fore the width of the ignition stagesor of the wave frontd for
the BDE issmaller than the corresponding one for the ZFE.

Let us briefly mention several existing asymptotic theo-
ries for the ZFE. Shneidmanf21g and Shiet al. f22g Laplace
transformed the continuum ZFE and matched a first stage of
pure advection of clusters to a local expansion about the
wave front when it is near its final position at the critical
size. They obtained our simplest formula for the nucleation
rate, Eq.s67d with the same relaxation time,tTF or tTDG,
except that their values fortM were different from Eq.s66d.
This can be expected from Wu’s arguments about approxi-
mating the discrete BDE by the continuum ZFEf19g; see the
systematic shift of approximations of the ZFE with respect to
numerical solutions of the BDE in Fig. 20 of Ref.f19g.
Trinkaus and Yoof20g studied a ZFE with a drift term lin-

FIG. 5. sad Evolution of the dimensionless flux at critical size
jstd, and sbd number of clusters surpassing critical sizeNcstd as a
function of time sin dimensionless unitsd for disilicate glass at
820 K, kc=34. Solid lines correspond to numerical results, dashed
lines to the approximation given by Eqs.s76d–s79d, and dot-dashed
lines to Eqs.s81d–s83d.

FIG. 6. Same as Fig. 5 for disilicate glass at 703 K, which has a
critical sizekc=18.
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earized about the critical sizesparabolic barrierd as an ap-
proximation to the full ZFE. Their results are comparable to
those found by means of the Laplace transform and matched
asymptotic expansions; see Wu’s reviewf19g. All these au-
thors obtained a transition region for the nucleation ratejstd
that was wider than observed in the numerical solution of the
BDE. Several authors also found a nucleation rate for super-
critical clusters that did not tend toj` as t→` if kÞkc
f20,22,24g, which is often called theasymptotics catastrophe
f26g. Our theory is free from this deficiency: Eq.sB5d in
Appendix B provides the flux atk.kc using the TF diffusiv-
ity

jk = j`e−w̃X0k/3e−w̃k2/6

= j` expf− X0
Î2w̃/3e−st−tMd/s2tdge−e−st−tMd/t

, s85d

in which X0=e3/2sk−kcd. Notice that jk, j` as t→`, even
after making our simplest approximation: linearization of the
wave front about the critical size. To get rid of the asymp-
totics catastrophe, Maksimovet al. f26g assumed that
SsX,Td=s1/2derfchfAe−t/s2td+BsXdg /Î1−ze−t/tj, in which the
new functionBsXd obeyed anad hocself-consistent equation
that ensuredjk, j` as t→` even if kÞkc. Note that if we
use Eq.s63d for X=k and the linearization approximation for
A as in Appendix C, we obtain the previous formula forS
with z=1, A=etM/s2td and B=0. Shneidmanf27g criticized
Maksimovet al.’s result and extended his earlier asymptotic
formula for the nucleation ratef23g to noncritical sizes. The
previous criticism of using approximations to the ZFE in-
stead of approximations to the discrete BDE apply to these
works. Our more precise approximation using Eq.s58d plus
the exact equations for the wave front location and its instan-
taneous width improve upon these approximations and per-
form better for materials with large critical sizes.

The time lag obtained from the numerical solution of the
BDE with the TF diffusivity sor from our asymptotic ap-
proximations using itd is too small as compared with experi-
mental resultssabout thirty times smaller for disilicate at
703 Kd. The TF discrete diffusivity yields an excessively
small time unit, as shown in Table I. We have greatly im-
proved the agreement of theory and experiments by using a
different formula for the discrete diffusivity, which is found
by imposing that the growth rate of a critical nucleus result-
ing from the BDE be the same as obtained by heat transfer.
In this case, our asymptotic approximations have a slightly
different scaling of time and different expressions forUsKd
andDsKd.
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APPENDIX A: GENERAL SOLUTION OF EQ. (51)

It is convenient to rewrite this equation in terms of the
variablesK andX, as

]J

]K
+

U8sKd
UsKd

]sXJd
]X

=
DsKd
UsKd

]2J

]X2 , sA1d

to be solved with the homogeneous boundary condition

Se−3/2 +
U8sKdXin

UsKd
DJ −

DsKd
UsKd

]J

]X
= 0 sA2d

sat X=Xin;e 3/2−Ke−3/2, corresponding tok=1 in the defi-
nition of Xd, and with initial condition JsX,K0d
=−]S0sXd /]X. The boundary condition is obtained by differ-
entiating

SsXin,Td = 1 sA3d

with respect toT and then using the definition ofJ and Eqs.
s41d and s47d. The solution of the initial-boundary value
problem is

JsX,Kd = −E
−`

`

GsX,K;X0,K0d
]S0sX0d

]X0
dX0, sA4d

where the Green’s functionGsX,K ;X0,K0d satisfies Eq.sA1d
with initial condition GsX,K0+ ;X0,K0d=dsX−X0d and the
same homogeneous boundary condition asJ at X=Xin. In a
simple application of the method of images, the Green’s
function for this BVP can be written in terms of the Green’s
function G`sX,K ;X0,K0d for the infinite real lineX, as

GsX,K;X0,K0d = G`sX,K;X0,K0d

+ csX0;K,K0dG`sX,K;2XinU0/U − X0,K0d,

sA5d

csX0;K,K0d =

SXin

U
−

X0

U0
DD

Se−3/2 +
U8Xin

U
D2UB

+ 1

SXin

U
−

X0

U0
DD

Se−3/2 +
U8Xin

U
D2UB

− 1

, sA6d

BsK,K0d =E
K0

K DsKddK

UsKd3 . sA7d

Now, G`sX,K ;X0,K0d can be calculated by first writing an

equation for the Fourier transformĜ`sj ,K ;X0,K0d
=e−`

` eijXG`sX,K ;X0,K0ddX. Such an equation is a first-order
quasilinear hyperbolic equation that can be solved by the

method of characteristics. The result is thatĜ` is Gaussian in
j. Inverting the Fourier transform, we obtain
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G`sX,K;X0,K0d =
e−sX/U − X0/U0d2/4BsK,K0d

UÎ4pBsK,K0d
. sA8d

Given the initial condition S0sX0d=Hs2e3/2−K0e−3/2−X0d
spure monomersd, Eq. sA4d yields

JsX,Kd = GsX,K;2e 3/2 − e−3/2K0,K0d ,
e−X2/4U2BsK,K0d

UÎ4pBsK,K0d
,

sA9d

which is Eq. s53d, up to exponentially small terms. Here
K0=e3, U0=UsK0d=2e2 sinhfw̃ / s2ed−w̃ /2g,e2ew̃/s2ed−w̃/2, U
=UsKd, andK=KsTd.

APPENDIX B: CALCULATING THE TIME LAG

The timeTM can be estimated from Eq.s41d with initial
conditionKs0d=e3 spure monomersd as

TM − et` =E
e 3

1−e 3/2kM dK

UsKd

=E
e 3

1−e 3/2kM dK

U8s1dsK − 1d

+E
e 3

1−e 3/2kM F 1

UsKd
−

1

U8s1dsK − 1dGdK,

sB1d

where t` is the duration of the initial discrete stage in the
original time scale. After straightforward calculations, we
obtain Eq.s66d.

The number of supercritical clusters is

Nc , E
0

t

jstddt = j`Ht +E
0

t

fexps− e−st−tMd/td − 1gdtJ
, j`st − ud, sB2d

u ; E
0

`

f1 − exps− e−st−tMd/tdgdt

= tE
0

etM/t 1 − e−x

x
dx= tM + tg + tE1setM/td, sB3d

whereE1sxd is an exponential integral andg=0.577215. . . is
Euler’s constantf28g. Notice thattE1sxd,te−x/x,9efw̃s1
−e 3dg−2e−w̃/s6e 3d!e!1, asx=etM/t, w̃ / s6e3d@1 f28g. Thus
we can ignore the exponential integral in Eq.sB3d, which
simplifies somewhat more Eq.s68d.

Sometimes it is interesting to calculate the creation rate of
clusters of sizek.kc. If k is close to critical size, we can
write

X = e 3/2Sk −
K

e 3D = e 3/2sk − e−3d + k. sB4d

ThusX=X0+k, with X0=e3/2sk−e−3d. InsertingX=X0+k and
K=1−e 3/2k in Eq. s58d, we obtain the creation rate of clus-
ters of sizek=e−3+X0e−3/2:

jk = j`e−w̃X0k/3e−w̃k2/6

= j` expf− X0
Î2w̃/3e−st−tMd/s2tdge−e−st−tMd/t

. sB5d

Notice that jk, j` as t→`. Thus our asymptotic result for
the flux over any cluster size is free from theasymptotics
catastrophef26g: several authors found that their expressions
for the flux tend toJÞ j` as t→` if kÞkc. These catastro-
phes are due to inappropriate assumptions they made in their
derivations.

APPENDIX C: LINEARIZATION OF THE EQUATIONS
FOR K„T… AND A„T… ABOUT THE CRITICAL

SIZE

A possible approximation of the wave front equations
consists of linearizing the equations forKsTd andAsTd about
the critical sizeK=1:

dK

dT
< U8s1dsK − 1d, sC1d

dA

dT
− 2U8s1dA < Ds1d, sC2d

with Ks0d=e 3 andAs0d<0 sinitial condition of pure mono-
mersd. Both for the TF discrete diffusivity and for tempera-
ture driven growth of the nucleus, we have

U8s1d = −
w̃

3
, Ds1d = 1. sC3d

The solutions of Eqs.sC1d and sC2d can be written in terms
of the time scalet as

Kstd < 1 − s1 − e 3de−t/s2td, sC4d

Astd <
3

2w̃
s1 − e−t/td, sC5d

for the TF diffusivity, and the same formulas withtTDG in-
stead oftTF for thermally driven growth. Near the critical
size, these equations would give an explicit expression of the
wave front profiles54d, with X=e 3/2k−e−3/2KsTd. The nucle-
ation rate of supercritical clusters is then obtained from Eq.
s58d with X=s1−Kd /e 3/2, together with Eqs.sC4d andsC5d.
For the TF diffusivity, j ; jkc

is

j

j`

,
f1 − s1 − e 3de−t/s2tdg2/3

Î1 − e−t/t

3expH− w̃FCstd
e 3 +

„1 − s1 − e 3de−t/s2td
…

−1/3 − 1

2
GJ ,

sC6d

Cstd = f1 − s1 − e 3de−t/s2tdg2/3 + f1 − s1 − e 3de−t/s2tdg−1/3 − 2

+
s1 − e 3d2e−t/t

6
H 1

1 − e−t/t − f1 − s1 − e 3de−t/s2tdg−4/3J .

sC7d
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Notice that the same results would have been obtained
from the ZFE because the difference between ourDsKd and
the corresponding one for the ZFE isUsKd /2, which van-
ishes atK=1. If we replace 1 instead off1−s1−e 3de−t/s2tdg
in the previous formulas, we find

j ,
j`

Î1 − e−t/t
expH−

w̃s1 − e 3d2

6e 3

e−2t/t

1 − e−t/tJ . sC8d

Demo and Kozísek’s theory for the ZFEf24g would yield Eq.
sC8d for the nucleation rate once a couple of errors are cor-
rected. They foundtDK=7tTF/5 instead of the correct relax-

ation timetTF, and an extra factor of 9 in the argument of the
exponential in Eq.sC8d. Moreover, their exponential con-
tains a factors1−ed instead ofs1−e 3d. Demo and Kozísek’s
Fig. 3 shows that their formulas do not improve as the cluster
size increases, as one would expect of correct asymptotic
expressions. Instead, they seem to optimize the nucleation
rate of crystals in disilicate atkc=27 sT=800 Kd, as com-
pared with numerical solutions. The earlier theory by
Trinkaus and Yoof20g calculated the Green function for a
time-dependent ZFE with a quadratic barrier and also used a
linear equation for the position of the wave front. Thus their
results are related to those in this appendix.
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