Existence of global-solutions to some nonlinear dissipative wave-equations



Downloads per month over past year

Carpio, Ana (1994) Existence of global-solutions to some nonlinear dissipative wave-equations. Journal de Mathématiques Pures et Appliquées, 73 (5). pp. 471-488. ISSN 0021-7824

[thumbnail of 46.pdf] PDF
Restringido a Repository staff only


Official URL: http://www.sciencedirect.com/science/journal/00217824


Let Omega be a smooth bounded domain. We prove existence of global solutions, i.e., solutions defined for all t epsilon R, for dissipative wave equations of the form: u'' - Delta u + \u'\(p-1) u' = 0 in Omega x (-infinity, infinity), p > 1, with Dirichlet boundary conditions. When Omega is unbounded the same existence result holds for p greater than or equal to 2.

Item Type:Article
Uncontrolled Keywords:Global solutions; dissipative wave equations
Subjects:Sciences > Mathematics > Differential equations
ID Code:15194
Deposited On:11 May 2012 07:51
Last Modified:12 Dec 2018 15:08

Origin of downloads

Repository Staff Only: item control page