### Impacto

### Downloads

Downloads per month over past year

Díaz Díaz, Jesús Ildefonso and Fleckinger-Pellé, Jacqueline
(2004)
*Positivity for large time of solutions of the heat equation: The parabolic antimaximum principle.*
Discrete and Continuous Dynamical Systems. Series A., 10
(1-2).
pp. 193-200.
ISSN 1078-0947

PDF
Restringido a Repository staff only 152kB |

Official URL: http://aimsciences.org/journals/pdfs.jsp?paperID=139&mode=full

## Abstract

We study the positivity, for large time, of the solutions to the heat equation Q(a) (f,u(0)): [GRAPHIC] where Q is a smooth bounded domain in RN and a C R. We obtain some sufficient conditions for having a finite time t(p) > 0 (depending on a and on the data u(0) and f which are not necessarily of the same sign) such that u(t, x) > 0 For Allt > t(p), a.e.x is an element of Omega.

Item Type: | Article |
---|---|

Uncontrolled Keywords: | maximum and antimaximum principle; heat equation; parabolic problems |

Subjects: | Sciences > Mathematics > Differential geometry Sciences > Mathematics > Differential equations |

ID Code: | 15471 |

Deposited On: | 04 Jun 2012 08:40 |

Last Modified: | 12 Dec 2018 15:07 |

### Origin of downloads

Repository Staff Only: item control page