Impacto
Downloads
Downloads per month over past year
Garrido, M. Isabel and Montalvo, Francisco (1992) Uniform approximation theorems for real-valued continuous functions. Topology and its Applications, 45 (2). pp. 145-155. ISSN 0166-8641
![]() |
PDF
Restringido a Repository staff only 754kB |
Official URL: http://www.sciencedirect.com/science/article/pii/0166864192900544
Abstract
For a topological space X, F(X) denotes the algebra of real-valued functions over X and C(X) the subalgebra of all functions in F(X) which are continuous. In this paper we characterize the uniformly dense linear subspaces of C(X) by means of the so-called "Lebesgue chain condition". This condition is a generalization to the unbounded case of the S-separation by Blasco and Molto for the bounded case. Through the Lebesgue chain condition we also characterize the linear subspaces of F(X) whose uniform closure is closed under composition with uniformly continuous functions.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Lebesgue chain condition |
Subjects: | Sciences > Mathematics > Topology |
ID Code: | 15541 |
Deposited On: | 08 Jun 2012 09:04 |
Last Modified: | 12 Dec 2018 15:13 |
Origin of downloads
Repository Staff Only: item control page