
Passive Testing of Timed Systems�

César Andrés, Mercedes G. Merayo, and Manuel Núñez

Dept. Sistemas Informáticos y Computación
Universidad Complutense de Madrid, 28040 Madrid, Spain
{c.andres,mgmerayo}@fdi.ucm.es, mn@sip.ucm.es

Abstract. This paper presents a methodology to perform passive test-
ing based on invariants for systems that present temporal restrictions.
Invariants represent the most relevant expected properties of the imple-
mentation under test. Intuitively, an invariant expresses the fact that
each time the implementation under test performs a given sequence of
actions, then it must exhibit a behavior in a lapse of time reflected in the
invariant. In particular, the algorithm presented in this paper are fully
implemented.

1 Introduction

Testing consists in checking the conformance of an implementation by performing
experiments on it. In order to perform this task, several techniques, algorithms,
and semantic frameworks have been introduced in the literature. The application
of formal testing techniques to check the correctness of a system requires to
identify the critical aspects of the system, that is, those aspects that will make
the difference between correct and incorrect behavior. In this line, the time
consumed by each operation should be considered critical in a real-time system.

Most testing approaches consist in the generation of a set of tests that are
applied to the implementation in order to check its correctness with respect to
a specification. Thus, testing is based on the ability of a tester to stimulate the
implementation under test (IUT) and check the correction of the answers pro-
vided by the implementation. However, in some situations this activity becomes
difficult and even impossible to perform. For example, this is the case if the
tester is not provided with a direct interface to interact with the IUT or the
implementation is built from components that are running in their environment
and cannot be shutdown or interrupted for a long period of time. The activity of
testing could be specially difficult if the tester must check temporal restrictions.
In these situations, the instruments of measurement could be not so precise as
required or the results could be distorted due to mistakes during the observa-
tion. As a result, undiscovered faults may result in failures at runtime, where
the system may perform untested traces. In these situations, there is a particu-
lar interest in using other types of testing techniques such as passive testing. In

� Research partially supported by the Spanish MEC project WEST/FAST (TIN2006-
15578-C02-01) and the Marie Curie project TAROT (MRTN-CT-2003-505121).

Cha et al. (Eds.): ATVA 2008, LNCS 5311, pp. 418–427, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Passive Testing of Timed Systems 419

passive testing the tester does not need to interact with the IUT. On the con-
trary, execution traces are observed and analyzed without interfering with the
behavior of the IUT. Passive testing has very large domains of application. For
instance, it can be used as a monitoring technique to detect and report errors
(this is the use that we consider in this paper). Another area of application is
in network management to detect configuration problems, fault identification,
or resource provisioning. It can be also used to study the feasibility of new fea-
tures as classes of services, network security, and congestion control. Usually,
execution traces of the implementation are compared with the specification to
detect faults in the implementation. In most of these works the specification has
the form of a finite state machine (FSM) and the studies consist in verifying that
the executed trace is accepted by the FSM specification. A drawback of these
first approaches is the low performance of the proposed algorithms (in terms of
complexity in the worst case) if non-deterministic specifications are considered.
A new approach was proposed in [1]. There, a set of properties called invariants
were extracted from the specification and checked on the traces observed from
the implementation to test their correctness. One of the drawbacks of this work
was the limitation on the grammar used to express invariants. A new formalism
that overcomes this restriction for expressing invariants was presented in [2]. It
allows to specify wildcard characters in invariants and to include a set of out-
puts as termination of the invariant. In addition, a new kind of invariants was
introduced: Obligation invariants.

In this paper we extend [2] in order to deal with timed restrictions. We will use
a simple extension of the classical concept of Finite State Machines that allows a
specifier to explicitly denote temporal requirements for each action of a system.
Intuitively, transitions in timed finite state machines indicate that if the machine
is in a state s and receives and input i then after t time units it will produce
and output o and it will change its state to s′. Next, we informally introduce the
formalism to express temporal conditions in the invariants: Timed invariants.
We distinguish between timed restrictions related to each action in the trace
represented in the invariant and the one corresponding to the whole trace. For
example we could represent properties as “Each time that a user applies “a”
and observes “y” the amount of time the system spends to perform the action is
between 3 and 5 time units, if after performing some operations the user applies
“b” then he observes “z” in 2 time units and the performance of all these actions
does not exceed 10 time units”.

In our approach, we perform two types of property verification: One on the
specification and another one on the traces generated by the implementation.
Due to the fact that we assume that the timed invariants can be supplied by
the tester, the first step must be to check that the invariant is in fact correct
with respect to the specification. An extension of the algorithm proposed in [2]
to check this correctness is provided, taking into account the timed conditions
that appear in the timed invariants. The next step is to check whether the trace
produced by the IUT respects timed invariants. In this case, we propose an
algorithm that is an adaption of the classical algorithms for string matching.

420 C. Andrés, M.G. Merayo, and M. Núñez

It works, in the worst case, in time O(m · n) where m and n are the length of
the trace and the invariant, respectively. Let us remark that we cannot achieve
complexities as good as the ones in classical algorithms because we have to find
all the occurrences of the pattern. Due to the last of space we could not include
this part of our research in this paper. A longer version of this paper, including
all the previously mentioned algorithms, can be found at [3].

The rest of the paper is organized as follows. In Section 2 we present the
notation we apply along the paper. We also introduce our timed extension of the
classical finite state machine model. In Section 3 notions of timed invariant and
passive testing are presented, as well as the algorithms to check the correctness
of invariants with respect to the specification. Finally, Section 4 presents the
conclusions of the paper and some lines for future work.

2 Preliminaries

First we introduce notation regarding the definition of time intervals. In this
paper we consider that these intervals are contained in IR+, that is, they contain
real values greater than or equal to zero.

Definition 1. We say that â = [a1, a2] is a time interval if a1 ∈ IR+, a2 ∈
IR+ ∪ {∞}, and a1 ≤ a2. We assume that for all t ∈ IR+ we have t < ∞ and
t + ∞ = ∞. We consider that IIR+ denotes the set of time intervals. Let â =
[a1, a2] and b̂ = [b1, b2] be time intervals. We consider the following functions:

– ⊕ : IIR+ × IR+ → IIR+ defined as ⊕(â, t) = [a1 + t, a2 + t].
– � : IIR+ × IIR+ → IIR+ defined as �(â, b̂) = [min(a1, b1), max(a2, b2)] where

min and max denote the minimum and maximum value respectively.
– + : IIR+ × IIR+ → IIR+ defined as [a1, a2] + [b1, b2] = [a1 + b1, a2 + b2]. �	

Time intervals will be used to express time constraints associated with the per-
formance of actions. The idea is that if we associate a time interval [t1, t2] ∈ IIR+

with a task we indicate that this task should take at least t1 time units and at
most t2 time units to be performed. Intervals like [0, t], [t,∞], or [0,∞] denote
the absence of a temporal lower/upper bound and the absence of any bound,
respectively. Let us note that in the case of [t,∞] we are abusing the notation
since this interval represents, in fact, the interval [t,∞).

Next we introduce our timed extension of the classical finite state machine
model. The main difference with respect to usual FSMs consists in the addition
of time to indicate the lapse between offering an input and receiving an output.

Definition 2. A Timed Finite State Machine, in the following TFSM, is a tuple
M = (S, I,O, T r, sin) where S is a finite set of states, I is the set of input
actions, O is the set of output actions, Tr is the set of transitions, and sin is the
initial state.

A transition belonging to Tr is a tuple (s, s′, i, o, t) where s, s′ ∈ S are the
initial and final states of the transition, i ∈ I and o ∈ O are the input and output

Passive Testing of Timed Systems 421

s1 s2

s4 s3

a/x/3

b/y/5

a/x/1

b/z/4

c/y/6

b/y/2

b/x/4

a/z/1

c/y/7

a/z/4

Fig. 1. Example of TFSM

actions, respectively, and t ∈ IR+ denotes the time that the transition needs to
be completed. We say that M is input-enabled if for all state s ∈ S and input
i ∈ I, there exist s′ ∈ S, o ∈ O, and t ∈ IR+ such that (s, s′, i, o, t) ∈ Tr. �	
Intuitively, a transition (s, s′, i, o, t) indicates that if the machine is in state s
and receives the input i then, after t time units, the machine emits the output o

and moves to s′. We denote this transition by s
i/o,t−−−−→ s′. In Figure 1 we give a

graphical representation of a TFSM where s1 is the initial state. In this paper we
assume that all the machines are input enabled. Next, we introduce the notion
of trace of a TFSM. As usual, a trace is a sequence of input/output pairs. In
addition, we have to record the time that the trace needs to be performed.

Definition 3. Let M = (S, I, O, T r, sin) be a TFSM. We say that a tuple such
as (s, s′, (i1/o1, . . . , ir/or), t) is a timed trace, or simply trace, of M if there
exist (s, s1, i1, o1, t1) . . . (sr−1, s

′, ir, or, tr) ∈ Tr such that t =
∑

ti. We will
sometimes denote a trace (s, s′, (i1/o1, . . . , ir/or), t) by (s, σ, s′), where σ =
((i1/o1, . . . , ir/or), t). �	

3 Timed Invariants

In this section we introduce the notion of timed invariant. These invariants allow
us to express temporal properties that must be fulfilled by the implementation. For
example, we can express that the time the system takes to perform a transition
always belongs to a specific interval. Thus, timed invariants are used to express
the temporal restrictions of a trace. In our formalism we assume that timed in-
variants are given by the tester and are derived from the original requirements.
Alternatively, we could consider that invariants are extracted from the specifica-
tion. In fact, we can do this easily by adapting the method given in [1] to our timed
framework. However, this leads to a huge set of invariants, where not all of them
are relevant. In our approach we need to check that the timed invariants proposed
by the tester are correctwith respect to the specification. Once we have a collection
of correct timed invariants, we will have to check if these invariants are satisfied

422 C. Andrés, M.G. Merayo, and M. Núñez

by the traces produced by the implementation. In the extended version of the pa-
per [3] we provide an algorithm to check the correctness of the log, recorded from
the implementation, with respect to an invariant.

In order to express traces in a concise way, we will use the wildcard characters ?
and �. The wildcard ? represents any value in the sets I and O, while � represents
a sequence of input/output pairs.

Definition 4. Let M = (S, I,O, T r, sin) be a TFSM. We say that the sequence
I is a (simple) timed invariant for M if the following two conditions hold:

1. I is defined according to the following EBNF:

I ::= a/z/p̂, I | � /p̂, I ′ | i
→ O/p̂ � t̂
I ′ ::= i/z/p̂, I | i
→ O/p̂ � t̂

In this expression we consider p̂, t̂ ∈ IIR+ , i ∈ I, a ∈ I ∪ {?}, z ∈ O ∪ {?},
and O ⊆ O.

2. I is correct with respect to M .
3. We denote the set of simple timed invariants by SimpleTInv. �	

Let us remark that time conditions established in invariants are given by inter-
vals. However, machines in our formalism present time information expressed
as fix amounts of time. This fact is due to consider that it can be admissible
that the execution of a task sometimes lasts more than expected: If most of the
times the task is performed on time, a small number of delays can be tolerated.
Moreover, another reason for the tester to allow imprecisions is that the artifacts
measuring time while testing a system might not be as precise as desirable. In
this case, an apparent wrong behavior due to bad timing can be in fact correct
since it may happen that the watches are not working properly. A longer ex-
planation on the use of time intervals to deal with imprecisions can be found
in [4].

Intuitively, the previous EBNF expresses that an invariant is either a sequence
of symbols where each component, but the last one, is either an expression a/z/p̂,
with a being an input action or the wildcard character ?, z being an output
action or the wildcard character ?, and p̂ being a timed interval, or an expression
�/p̂. There are two restrictions to this rule. First, an invariant cannot contain
two consecutive expressions �/p̂1 and �/p̂2. In the case that such a situation
was needed to represent a property, the tester could simulate it by means of
the expression ∗, (p̂1 + p̂2). The second restriction is that an invariant cannot
present a component of the form �/p̂ followed by an expression beginning with
the wildcard character ?, that is, the input of the next component must be a real
input action i ∈ I. In fact, � represents any sequence of inputs/outputs pairs
such that the input is not equal to i.

The last component, corresponding to the expression i
→ O/p̂ � t̂ is an input
action followed by a set of output actions and two timed restrictions, denoted by
means of two intervals p̂ and t̂. The first one is associated to the last expression
of the sequence. The last one is related to the sum of time values associated to all

Passive Testing of Timed Systems 423

input/output pairs performed before. For example, the meaning of an invariant
as i/o/p̂, �/p̂�, i

′
→ O/p̂′ � t̂ is that if we observe the transition i/o in a time
belonging to the interval p̂, then the first occurrence of the input symbol i′ after
a lapse of time belonging to the interval p̂�, must be followed by an output
belonging to the set O. The interval t̂ makes reference to the total time that the
system must spend to perform the whole trace. This notion of invariant allows
us to express several properties of the system under study. Next we introduce
some examples in order to present how invariants work.

Example 1. The simplest invariant we can define with our framework for ex-
pressing a property of the system follows the scheme i
→ {o}/[2, 3] � [2, 3]. The
idea is that each occurrence of the input i is followed by the output o and this
transition is performed between 2 and 3 time units.

We can specify a more complex property by taking into account that we
are interested in observing the output o after the input i only if the input i0
was previously observed. In addition, we include intervals corresponding to the
amount of time the system takes for each of the transitions and the total time
it spends in the whole trace. We could express this property by means of the
invariant i0/?/[1, 4], �/[2, 5], i
→ {o}/[2, 3] � [2, 12]. An observed trace will be
correct with respect to this invariant if each time that we find a (sub)sequence
starting with the input i0 and any output symbol which has been performed in
an amount of time belonging to the interval [1, 4], then if there is an occurrence of
the input symbol i before 5 time units pass then the input i must be paired with
the output symbol o and the lapse between i and o must be in the interval [2, 3]. In
addition, the whole sequence must take a time belonging to the interval [2, 12].
Let us remind that the notion of correctness that we just discussed concerns
traces observed from the IUT and invariants. A different correctness concept,
that we analyze in this paper, relates invariants and specifications.

We can refine the previous invariant if we consider only the cases where the
pair i0/o0 was observed. The invariant for denoting this property is the following
i0/o0/[1, 4], �/[0, 5], i
→ {o}/[2, 3] � [2, 12]. Let us remark that we could not
deduce that we have found an error if the pair i0/o0 appears in the observed
trace but the input i is not detected afterwards in the corresponding trace. In
such a situation we cannot conclude that the implementation fails. Similarly,
if we find the pair i0/o1 we cannot conclude anything since the premise of the
invariant, that is, the whole sequence but the last pair was not found. Again,
the situation is different when analyzing the correctness of an invariant with
respect to a specification. For instance, if the specification cannot perform the
trace induced by the invariant then we will consider that the invariant is not
correct with respect to the specification.

Finally, an invariant such as i
→ {o1, o2}/[1, 4] � [1, 4] indicates that after
input i we observe either the output o1 or o2 in a time belonging to [1,4]. �	
Since we assume that invariants can be defined by a tester, we must ensure that
they are correct with respect to the specification. Next we explain the most
relevant aspects of our algorithm to decide whether an invariant is correct with
respect to a specification. We separate the algorithm into three different parts.

424 C. Andrés, M.G. Merayo, and M. Núñez

in : M = (S, I,O, T r, sin).
I = {a1/p̂1, . . . , an−1/ ˆpn−1, in �→ O/p̂n � p̂} where for all 1 ≤ k ≤ n− 1 we

have that p̂k ∈ IIR+ , and either ak = ik/ok, with ik ∈ I ∪ {?} and ok ∈ O ∪ {?},
or ak = �; in ∈ I, O ⊆ O, and p̂n, p̂ ∈ IIR+ .
out: Bool .
b :: array of IIR+ [|S|] ;
// an array containing time intervals, having size |S|,
//and being ⊥ the initial value of all positions
I ′ = I ; S′ ← S; j ← 1; S′′ ← ∅;
while (j < n) do

b′ :: array of IIR+ [|S|];
if (head(I ′) = (�/t̂)) then

while (S′ �= ∅) do
Choose sα ∈ S′;
S′ ← S′ \ {sα};
Saux ← afterInt(sα, t̂, ij+1);
while (Saux �= ∅) do

Choose (sp, t) ∈ Saux;
Saux ← Saux \ {(sp, t)};
S′′ ← S′′ ∪ {sp};
if (b′p =⊥) then

b′p ← ⊕(bα, t);
else

b′p ← �(⊕(bα, t), bp
′);

else
while (S′ �= ∅) do

Choose sa ∈ S′;
S′ ← S′ \ {sa};
Tr′ ← afterCond(sa, ij , oj , p̂j);
while (Tr′ �= ∅) do

Choose (sa, sb, ij , oj , t) ∈ Tr′;
Tr′ ← Tr′ − {(sa, sb, ij , oj , t)};
if (b′b =⊥) then

b′b ← ⊕(ba, t);
else

b′b ← �(⊕(ba, t), bb
′);

S′′ ← S′′ ∪ {sb};

I ′ = tail(I ′);
b← b′; S′ ← S′′; S′′ ← ∅; j ← j + 1;

Fig. 2. Correctness of an invariant with respect to a specification (1/3)

The first part of the algorithm (see Figure 2) is responsible for treating the
preface of the invariant, that is, to determine the states that can be reached
in the specification after the first n − 1 input/output/time tuples have been
traversed. The second phase (see Figure 3, left) is used to check that the last
pair of the invariant is correct for the specification. In other words, to detect

Passive Testing of Timed Systems 425

that for all the states computed in the previous step, if the last input of the
invariant can be performed then the obtained output belongs to the set of outputs
appearing in this last expression of the invariant. In addition we also check that
these transitions are performed in the time interval appearing in the invariant.
Finally, the third part of the algorithm (see Figure 3, right) verifies the last part
of the invariant: The sequence is always performed in a time belonging to the
corresponding interval. Next we introduce additional notation.

Definition 5. Let M = (S, I,O, T r, sin) be a TFSM, s ∈ S, a ∈ I ∪ {?}, z ∈
O ∪ {?}, and t̂ ∈ IIR+ . We define the set afterCond(s, a, z, t̂) as the set of
transitions belonging to Tr having as initial state s, as input a, as output z, and
such that its time belongs to the interval t̂.

afterCond(s, i, o, t̂) = {(s, s′, i, o, t)|∃s′ ∈ S, t ∈ IR+(s, s′, i, o, t) ∈ Tr ∧ t ∈ t̂}

afterCond(s, ?, o, t̂) =
�

i∈I afterCond(s, i, o, t̂)

afterCond(s, i, ?, t̂) =
�

o∈O afterCond(s, i, o, t̂)

afterCond(s, ?, ?, t̂) =
�

i∈I,o∈O afterCond(s, i, o, t̂)

We define the function afterInt(s, t̂, i) as the function that computes the set of
pairs (s′, t) of states s′ ∈ S that can be reached from state s after t time units,
belonging t to the interval t̂, and such that the input i is not performed. We will
use an auxiliary function so that afterIntAux(s, t̂, i) = afterIntAux(s, t̂, i, 0),
being this function defined as follows:

afterIntAux(s, t̂, i, tot) = {(s, tot)|tot ∈ t̂}
⋃

⋃

(s, s′′, i′, o, t) ∈ Tr
t̂ (tot + t)

i �= i′

afterIntAux(s′′, t̂, i, tot + t)

where : IIR+ × IR+ → {true, false} is defined as [t1, t2] t = (t ≤ t2). �	
In the first phase of the algorithm we have to initially obtain the set of states that
can perform the first input/output of the invariant. We compute the states that
can be reached from that initial set after performing that transition and such
that the time value associated with the transition falls within the range marked
by the invariant. We iterate this process until we reach the last expression of the
invariant. We consider two auxiliary functions: head() returns the first element
of the invariant and tail() removes this first element from the invariant. Let us
remark that we distinguish between input/output pairs, possibly including the
wildcard ?, and occurrences of �. In the latter case we will use the previously
defined afterInt() function to compute the corresponding reached states.

426 C. Andrés, M.G. Merayo, and M. Núñez

error ← false;
if (S′ = ∅) then

error← true;
end
b′ :: array of IIR+ [|S|];
while (S′ �= ∅) do

Choose sa ∈ S′;
S′ ← S′ \ {sa};
Tr′ ← afterCond(sa, in, ?, [0,∞]);
while (Tr′ �= ∅) do

Choose (sa, sb, in, o, t) ∈ Tr′;
Tr′ ← Tr′ \ {(sa, sb, in, o, t)};
if ((o ∈ O) ∧ (t ∈ p̂n)) then

if (b′b =⊥) then
b′b ← ⊕(ba, t);

else
b′b ← �(⊕(ba, t), b′b);

S′′ ← S′′ ∪ {sb};
else

error ← true

if (S′′ = ∅) then
error← true;

end
while (S′′ �= ∅) do

Choose si ∈ S′′;
S′′ ← S′′ \ {si};
if (¬(b′

i ⊆ p̂)) then
error ← true;

return (¬error);

Fig. 3. Correctness of an invariant with respect to a specification (2/3) and (3/3)

The input of the second phase of the algorithm (see Figure 3, left) is the set
of states that can be reached after the preface of the invariant is performed. In
addition, we also record the time that it took to reach each of these states. If this
set is empty then the invariant is not correct. The idea is that we should not use an
invariant such that its sequence of input/output/interval cannot be performed in
the specification. If this set is not empty, we will check that for all reached states
if they can perform the last input of the invariant then the obtained output must
belong to the set of outputs appearing in this last expression of the invariant. In
addition, time values have to belong to the time interval of the invariant.

The third step of the algorithm (Figure 3, right) will be devoted to check that
the time behavior of the whole invariant is correct with respect to the specifica-
tion. In order to do this, in the previous stages we recorded all the time values
associated with the performance of input/output pairs. We use the functions ⊕
and � to operate with the recorded time values and construct an interval. Thus,
in the position k of the array b we store an interval that has as bounds the min-
imal/ maximal times that are needed to reach the state k after performing the
whole invariant. If a state is not reachable after the sequence associated with the
invariant then b[k] = ⊥. Next, we concentrate only in states of the specification
that can be reached, that is, b[k] �= ⊥ and check that all those intervals are
contained in the interval appearing at the very last position of the invariant.

Lemma 1. Let M = (S, I,O, T r, sin) be a TFSM. The worst case of the al-
gorithm given in Figures 2 and 3 checks the correctness of the invariant I =
i1/o1/p̂1, . . . , in−1/on−1/p̂n−1, in
→ O/p̂n � t̂ with respect to M :

Passive Testing of Timed Systems 427

– in time O(n · |Tr|) and space O(|Tr|) if I does not present occurrences of �.
– in time O(k · |Tr|2+(n−k)· |Tr|) and space O(|Tr|) if I presents occurrences

of �, being k the number of �’s in I. �	

4 Conclusions and Future Work

In this paper we have introduced a new methodology for passive testing systems
that present timed constraints over the duration of the actions. We introduced
an extension of the classical Finite State Machine model in order to deal with
this kind of systems. This methodology extends the definition of an invariant,
allowing to express properties regarding temporal conditions that the IUT must
fulfill. We presented an algorithm which allows to establish the correctness of the
proposed invariants with respect to a given specification. In a longer version of
this paper [3] we also deal with the correctness of an observed trace with respect
to an invariant.

Regarding future work, we plan to extend the family of invariants. In fact,
we have already developed a timed version of obligation invariants [2]. The sec-
ond line of future work consists in performing real experiments. The experience
gained with the WAP protocol during the preparation of [2] makes this a good
candidate to study time properties in our passive testing framework.

References

1. Cavalli, A., Gervy, C., Prokopenko, S.: New approaches for passive testing using
an extended finite state machine specification. Journal of Information and Software
Technology 45, 837–852 (2003)

2. Bayse, E., Cavalli, A., Núñez, M., Zäıdi, F.: A passive testing approach based on
invariants: Application to the WAP. Computer Networks 48(2), 247–266 (2005)

3. Andrés, C., Merayo, M., Núñez, M.: Passive testing of timed systems (2008),
http://kimba.mat.ucm.es/∼manolo/papers/atva08-passive-extended.pdf

4. Merayo, M., Núñez, M., Rodŕıguez, I.: Formal testing of systems presenting soft and
hard deadlines. In: Arbab, F., Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767, pp.
160–174. Springer, Heidelberg (2007)

http://kimba.mat.ucm.es/~manolo/papers/atva08-passive-extended.pdf

	Passive Testing of Timed Systems
	Introduction
	Preliminaries
	Timed Invariants
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

