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Abstract

Stream X-machines have been used to specify real sys-
tems requiring to represent complex data structures. One
of the advantages of using stream X-machines to specify a
system is that it is possible to produce a test set that, under
certain conditions, detects all the faults of an implementa-
tion. In this paper we present a formal framework to test
temporal behaviors in systems where temporal aspects are
critical. Temporal requirements are expressed by means of
random variables and affect the duration of actions. Im-
plementation relations are presented as well as a method to
determine the conformance of an implementation with re-
spect to a specification by applying a test set.

1. Introduction

Testing consists in checking the conformity of an imple-
mentation by performing experiments on it. The application
of formal testing techniques [7, 26, 25, 35] to check the cor-
rectness of a system requires to identify the critical aspects
of the system, that is, those aspects that will make the dif-
ference between correct and incorrect behavior. While the
relevant aspects of some systems only concern what they
do, in some other systems it is equally relevant how they
do what they do. For instance, the time consumed by each
operation should be considered critical in real-time systems.

In order to perform this task, several techniques, algo-
rithms, and semantic frameworks have been introduced in
the literature. The testing community has shown a growing
interest in extending these frameworks so that not only func-
tional properties but also quantitative ones could be tested.
Thus, there have been several proposals for timed testing
(e.g. [31, 11, 17, 36, 12, 34, 24, 8]).
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Even though the inclusion of time allows the specifier to
give a more precise description of the system to be imple-
mented, there are frequent situations that cannot be accu-
rately described by using a simple notion of time such as a
task takes t seconds to be performed”. For example, we may
desire to specify a system where a message is expected to be
received with probability 1

2 in the interval (0, 1], with prob-
ability 1

4 in (1, 2], and so on. This is an advantage with re-
spect to usual deterministic time where we could only spec-
ify that the message arrives in the interval (0,∞). Thus,
stochastic extensions of classical formal models have ap-
peared in the literature (see e.g. [14, 1, 18, 5, 15, 9, 29, 28]).
As we have shown in the previous example, the main idea
underlying stochastic models is that time information is in-
cremented with some kind of probabilistic information.

In contrast with testing timed systems, testing stochas-
tic systems has received almost no attention. In fact, to the
best of our knowledge, there are only three works in the
field [4, 27, 33]. We think that this lack of research is due
to the technical difficulties in the definition of the corre-
sponding notions of testing. For example, even if we con-
sider white-box testing, as it is the case of [4, 27], we still
have technical problems as the aggregation of delays. In the
case of black-box testing, that we consider in this paper, the
problem of detecting time faults is much more involved than
in the case of timed testing. This is so because we will sup-
pose that the test(er) has no access to the probability distri-
bution functions associated with delays. Let us remark that
due to the probabilistic nature of time in stochastic timed
systems, several observations of a system may lead to differ-
ent execution times. Actually, this may happen even if the
implementation performs in all the cases the same sequence
of actions (and through the same sequence of states).

One of the possibilities to formally specify systems is
to use X-machines [19]. They can be seen as a form of
finite state machine where transitions are labelled with re-
lations over a basic data set. This set of relations is called
the type of the machine and represents the operations that
can perform. Different types of machines derived from the
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original model, in particular, stream X-machines. Stream
X-machines have an internal memory; the input, the current
state, and the current value of the internal memory deter-
mine the next state, the output, and how the memory is up-
dated. The main advantages of using them for representing
systems is that they can be adapted to the different necessi-
ties the systems can present as well as they allow to integrate
control and data processing. This formalism has been used
to specify systems in different areas [20, 3, 23] and several
testing techniques have been developed.

The standard stream X-Machines test generation algo-
rithm is based in the W-method introduced by [10] in the
context of finite state machines. The method presents some
restrictions: (a) specification and implementation must be
deterministic (b) the functions associated to the transitions
are correctly implemented and (c) it assumes that certain
conditions, called design for test conditions, hold. Un-
der these assumptions the set of tests generated by this
method is guaranteed to determine the correctness of the
system [21, 20]. This integration of specification and test
generation is one of the most significant benefits of using
deterministic stream X-machines in software development.
Since this method was developed, it has been extended for
reducing the imposed conditions (for a survey see [6]).

In this paper we present a formal testing methodol-
ogy where the temporal behavior of systems is considered.
Specifically, we will consider the approach sketched in [33]
in the context of stream X-machines. A suitable extension
of the classical concept of stream X-machine will allow a
specifier to explicitly denote temporal requirements for each
action of a system, taking advantage of the power that this
model provides. In the new formalism we will consider that
the delay between the input is applied and the output is re-
ceived is given by a random variable ξ. In order to cope with
this extension, the semantic frameworks have to be strongly
modified. In this line, we propose a conformance relation
according to our notion of correct implementation respect
to a specification for systems that present stochastic infor-
mation.

Regarding the derivation of test sets, we adapt the stan-
dard algorithm used for deterministic stream X-machines.
The inclusion of stochastic information is included in the
tests, allowing to check that the implementations fulfill the
time restrictions present in the specification in accordance
with the notion of conformance considered.

The rest of the paper is organized as follows. In Section 2
we present basic concepts regarding random variables and
finite automata. In Section 3 we introduce our model to
represent stochastic systems by means of stochastic stream
X-machines. In Section 4 we introduce a notion of confor-
mance for our framework where temporal behavior is taken
into account. In Section 5 we show how stochastic stream
X-machines can be tested and how to derive test sets from

stochastic stream X-machines, and the application of the
test set with our notion of conformance. Finally, in Sec-
tion 6 we present our conclusions.

2. Preliminaries

In this section we introduce some basic concepts that will
be used along the paper.

2.1. Random variables

We will consider that the sample space (that is, the do-
main of random variables) is the set of real numbers IR. Be-
sides, random variables take positive values only in IR+, that
is, in the set of non-negative real numbers. The reason for
this restriction is that they will always be associated with
time distributions, so they cannot take a negative value.

Definition 1 We denote by V the set of random variables
(ξ, ψ, . . . to range over V). Let ξ be a random variable. We
define its probability distribution function as the function
Fξ : IR+ −→ [0, 1] such that Fξ(x) = P (ξ ≤ x), where
P (ξ ≤ x) is the probability that ξ assumes values less than
or equal to x. Let ξ, ξ′ ∈ V be random variables. We write
ξ = ξ′ if for any x ∈ IR we have Fξ(x) = Fξ′(x). We will
denote by θ the random variable which probability distribu-
tion function is defined by F (x) = 1 for all x ∈ IR+.

Given two random variables ξ and ψ we consider that
ξ + ψ denotes a random variable distributed as the addition
of the two random variables ξ and ψ.

We will call sample to any multiset of elements belong-
ing to a set. Let A be a set. We denote the powerset of A
by P(A). We denote the set of multisets in A by ℘(A). Let
ξ be a random variable and J be a sample of positive real
numbers. We denote by γ(ξ, J) the confidence of ξ on J .

��

In the previous definition, a sample simply denotes a col-
lection of observed values by means of an experiment. In
our setting, samples will be associated with time values that
implementations take to perform sequences of actions. We
have that γ(ξ, J) takes values in the interval [0, 1]. Intu-
itively, bigger values of γ(ξ, J) indicate that the observed
sample J is more likely to be produced by the random vari-
able ξ. That is, this function decides how similar the proba-
bility distribution function generated by J and the one cor-
responding to the random variable ξ are. In the appendix of
this paper we show how confidence is formally defined.

2.2. Finite automata

We denote by C∗ the set of all finite sequences with el-
ements in C, c̄ denotes a sequence with length greater than
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0 while ε denotes the empty sequence. For all ā, b̄ ∈ C∗,
ab denotes the concatenation of the sequences ā and b̄. For
R,W ⊆ C∗, R ·W is {ab | ā ∈ R, b̄ ∈ W}. For a (partial
function) f : A → B, dom(f) denotes the domain of f .
Given D ⊆ A we denote by f |D the restriction of f to D.

Definition 2 A finite automaton, in short FA, is defined by
a tuple A = (S, s0, I, F,Γ) in which S is a finite set of
states, s0 ∈ S is the initial state, I is the finite input alpha-
bet, F : S × I −→ P(S) is the transition function, and
Γ ⊆ S is the set of final states. ��

Intuitively, if A receives an input i ∈ I when in state
s ∈ S it moves to some state in the set F (s, i).

Definition 3 Let A = (S, s0, I, F,Γ) be a FA. The relation
F ∗ : S × I∗ −→ P(S) is defined as follows:

F ∗(s, ε) = {s}
F ∗(s, īi) = {s′ | ∃s′′ ∈ F ∗(s, ī) : s′ ∈ F (s′′, i)}

The language accepted byA, denoted byL(A) is defined
as {̄i ∈ I∗ |F ∗(s0, ī)∩Γ �= ∅}. In the same way, for a state
s ∈ S the language accepted by A in s, denoted by LA(s),
is the set {̄i ∈ I∗ | F ∗(s, ī) ∩ Γ �= ∅}.

An FA is deterministic if for all s ∈ S and i ∈ I we
have |F (s, i)| ≤ 1. A pair of states si, sj ∈ S are called
equivalent if LA(si) = LA(sj); otherwise si and sj are
called distinguishable. A is reduced if for all si, sj ∈ S we
have that si �= sj implies si and sj are distinguishable.

Given two FAS A and A′ over the same input alphabet,
we say that A and A′ are equivalent if they accept the same
language, that is, L(A) = L(A′). A deterministic FA A, is
minimal if there does not exist any other equivalent deter-
ministic FA with fewer states than A. ��

Lemma 1 [32] For any FA there exists an equivalent mini-
mal deterministic FA. ��

In what follows we will refer to deterministic and mini-
mal FAS where all states are terminal, that is, Γ = S, and
we will denote them by a tuple A = (S, s0, I, F ).

2.3. Finite automaton testing

A test set is a set of input sequences obtained from a
specification such that can be applied to an implementation
to establish whether these two machines are equivalent, that
is, if their behaviors are the same. If they are not equiva-
lent then there will exist an input sequence in the test set
that will detect the difference. Several methods have been
presented for generating test sets from an FA specification
[10, 13, 30, 2]. In this paper we will apply the W-method
that was initially introduced by [10] in the context of com-
pletely specified finite state machines and extended by [2] to
partially specified finite state machines and finite automata.

Definition 4 Let S and I be two FAS over the same input
alphabet I . A finite set T ⊆ I∗ is a test set of S with respect
to I if L(S) ∩ T = L(I) ∩ T implies L(S) = L(I). ��

We will define some basic concepts that are the basis of
the W-method: State cover, transition cover, and character-
ization set of a minimal FA.

Definition 5 Let A = (S, s0, I, T r) be a minimal FA. A
set R ⊆ I∗ is a state cover of A if for all s ∈ S there exists
ī ∈ R such that Tr∗(s0, ī) = s. We say that P ⊆ I∗ is
a transition cover of A if for all s ∈ S there exists ī ∈ P
such that Tr∗(s0, ī) = s and for all i ∈ I we have īi ∈
P . Finally, W ⊆ I∗ is a characterization set of A if W
distinguishes between any two distinct states of A. ��

That is, a state cover is a set of input sequences that al-
lows us to access from the initial state to the states of the
machine. Let us note that if R is a state cover of A then
P = R ∪ (R · I) is a transition cover of A.

The following theorem is the theoretical basis of the W-
method in the context of deterministic finite automata.

Theorem 1 [2] Let A and A′ be two minimal deterministic
FAS over the same input alphabet I . Let n be the number
of states of A and m be the number of states of A′, with
m ≥ n. Let P and W , respectively, be a transition cover
and a characterization set of A and Z = (Im−n ∪ . . . ∪ I ∪
{ε})(W ∪ {ε}). Then, T = P · Z is a test set of A with
respect to A′. ��

3. A stochastic extension of stream X-machines

In this section we introduce our stochastic extension of
the classical stream X-machine model. The main difference
with respect to usual stream X-machines consists in the ad-
dition of time. We use random variables to model stochastic
delays. This extension will allow a specifier to explicitly de-
note temporal requirements for each action of a system.

Definition 6 A stochastic stream X-machine, in short
SSXM, is a tuple X = (I,O, S,Mem,Φ, F, s0,m0) where
I is the set of input actions, O is the set of output ac-
tions, S is a finite set of states, Mem is the memory, Φ,
called the type of M , is a finite set of partial functions,
φ : Mem×I −→ O×Mem×V represents timed process-
ing functions, F : S × Φ −→ S is the next state function,
s0 ∈ S is the initial state, and m0 ∈ Mem is the initial
memory value.

We can represent a SSXM by a finite automata where
the elements of the type Φ are used as input alphabet, and
the internal memory is not considered. The FA A(X) =
(S, s0,Φ, F ) over the alphabet Φ is called the associated
FA of X . ��
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Intuitively, we can think of a SSXM as a state transition
diagram where arcs are labelled by processing functions.
Each function receives an input and current memory values
and produces an output while may modify the memory. Ad-
ditionally, a random variable ξ ∈ V indicates that the time
invested by the system for performing these actions will be
equal to t time units with probability Fξ(t).

Example 1 Let us consider the machine depicted in Fig-
ure 1 in which the initial state is s1. Each processing func-
tion has associated random variables depending on the input
and memory value that they receive. Next we explain how
the random variables are distributed. Let us consider that ξ1
is uniformly distributed in the interval [0, 2]. Uniform dis-
tributions assign equal probability to all the time values in
the interval. The random variable ξ2 follows a Dirac distri-
bution in 4. The idea is that the corresponding delay will be
equal to 4 time units. Finally, ξ3 is exponentially distributed
with parameter 2. Let us consider that the initial memory
value is m0 = 0. Intuitively, if the machine is in state s1
and it receives the input a then it will produce the output b
and modify the value of the memory to 1 after a time given
by ξ1. For example, we know that this time will be less than
1 time unit with probability 1

2 , it will be less than 1.5 time
units with probability 3

4 , and so on. Finally, once 2 time
units have passed we know that the output b has been per-
formed (that is, we have probability 1). ��

Next we present some notions regarding stream X-
machines that will be used throughout the paper and some
results that will be adapted to be applied to our formalism.

Definition 7 A SSXM X = (I,O, S,Mem,Φ, F, s0,m0)
is deterministic if for all φ, φ′ ∈ Φ if there exists s ∈ S such
that (s, φ), (s, φ′) ∈ dom(F ) then φ = φ′ or dom(φ) ∩
dom(φ′) = ∅. We say that X is completely specified if for
all s ∈ S,m ∈ Mem, and i ∈ I , there exists φ ∈ Φ such
that (m, i) ∈ dom(φ) and (s, φ) ∈ dom(F ). ��

A SSXM is deterministic if given a state s, for any input
value and any memory value there is only one processing
function that can be applied. In turn, a SSXM is completely
specified if for all s ∈ S,m ∈ Mem and i ∈ I there is al-
ways a possible transition. If a deterministic SSXM is com-
pletely specified then there is only one transition for any
s ∈ S,m ∈Mem, and i ∈ I .

Next we introduce a partial function that establishes the
relation between a pair (memory values, input sequence)
and a triplet (output sequence, updated memory values, ran-
dom variable) produced by the application of a sequence of
timed processing functions.

Definition 8 Given a sequence φ̄ ∈ Φ∗, we consider
‖ φ̄ ‖: Mem × I∗ → O∗ × Mem × V to be a partial

function inductively defined in the following way:

‖ ε ‖= {((m, ε), (ε, m, θ)) | m ∈ Mem}

‖ φ̄φ ‖=


((m, īi), (ōo, m′, ξ))

∣∣∣∣∣∣∣
∃ m′′ ∈ Mem :
((m, ī), (ō, m′′, ξ′′)) ∈‖ φ̄ ‖
∧ ((m′′, i), (o, m′, ξ′)) ∈ φ
∧ ξ = ξ′ + ξ′′




��

In the previous definition we have used the notation
(a, b) ∈ f instead of the more standard f(a) = b.

Let us note that when we consider a deterministic SSXM
each computation from the initial state to any other state is
completely determined by the input sequence and the initial
memory value.

A SSXM gives rise to a relation between the input se-
quences applied to the machine and the output sequences
that it produces. This relation is given by the execution of
a sequence of processing functions, from the initial state
of the machine, that allows to obtain an output sequence in
response to an input sequence. In our formalism, we will re-
quire, for dealing with the specified temporal restrictions, to
extend this relation with the time that the machine needs for
performing the processing functions. Thus, we introduce a
new notion of correspondence between input sequences and
pairs of output sequences and random variables.

Definition 9 Let X = (I,O, S,Mem,Φ, F, s0,m0) be a
deterministic SSXM. The timed function computed by X
ftX : I∗ → O∗ × V is defined as follows:

ftX =


(̄i, ō, ξ)

∣∣∣∣∣∣
∃ m ∈Mem, ξ ∈ V, φ̄ ∈ Φ∗ :
(s0, φ̄) ∈ dom(F ∗) ∧
((m0, ī), (ō,m, ξ)) ∈‖ φ̄ ‖




The function computed by X fX : I∗ → O∗ is defined
as follows:

fX = {(̄i, ō)|∃ ξ ∈ V : (̄i, ō, ξ) ∈ ftX}

��

Let us note that if the machine X is deterministic and
completely specified then fX and ftX are total.

4. Conformance

In order to properly define how to test an implementa-
tion against a specification it is necessary to state what it
means for an implementation to be correct. It is usual when
testing from a stream X-machine to assume that the imple-
mentation under test (IUT) behaves like an unknown stream
X-machine. For the sake of simplicity we will assume that
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s1

s2 s3

φ1

φ2

φ3φ4

φ4

I = {a, b}
O = {a, b}
Mem = {1, 0}

φ1(0, a) = (b, 1, ξ1)
φ1(0, b) = (a, 1, ξ2)
φ2(1, a) = (b, 0, ξ2)
φ2(1, b) = (b, 0, ξ2)
φ3(0, a) = (b, 0, ξ1)
φ4(0, b) = (a, 1, ξ3)
φ4(1, a) = (a, 1, ξ3)
φ4(1, b) = (b, 1, ξ3)

Fξ1(x) =

{
0 if x ≤ 0
x
2

if 0 < x < 2
1 if x ≥ 2

Fξ2(x) =

{
0 if x < 4
1 if x ≥ 4

Fξ3(x) =

{
1 − e−2·x if x ≥ 0

0 if x < 0

Figure 1. Example of Stochastic Stream X-machine.

both, implementation and specification, are given by deter-
ministic SSXMs. This framework can be easily extended to
cope with non-determinism by considering [16, 22]. First
we introduce some auxiliary definitions.

Definition 10 Let X = (I,O, S,Mem,Φ, F, s0,m0) be a
deterministic SSXM.

We say that (s, s′, (φ1, . . . , φr)) is a trace of X if
there exist f1, . . . , fr ∈ F such that f1(s, φ1) =
s1, . . . , fr(sr−1, φr) = s′.

We say that the pair ((i1/o1, . . . , ir/or), ξ) is a stochas-
tic trace of X if there exists a trace (s0, s′, (φ1, . . . , φr))
of X such that for all 1 ≤ j ≤ r we have (mj−1, ij) ∈
dom(φj), φj(mj−1, ij) = (oj ,mj , ξj) and ξ =

∑r
j=1 ξj .

In addition, we say that (i1/o1, . . . , ir/or) is a non-
stochastic trace. We denote by STraces(X) and
NSTraces(X) the sets of stochastic and non-stochastic
traces of X , respectively. ��

The usual approach is that an implementation conforms
to a specification if they describe the same behavior, that
is, if the functions computed by them are equivalent. Addi-
tionally, we need to describe what means for a implementa-
tion to be temporally correct with respect to a specification.
It would be reasonable to require that any sequence of the
implementation have associated the same delay as the one
specified by the specification. This reasoning leads us to
define our first notion of conformance.

Definition 11 Let S and I be two deterministic SSXMs.
We say that I non-stochastically conforms to S, denoted
by I confns S, if fI = fS .

We say that I stochastically conforms to S, denoted by
I confs S, if ftI = ftS ��

In addition to requiring non-stochastic conformance we
have to ask for some conditions on delays. Thus, IconfsS
also requires that any stochastic trace of the specification
that is performed by the implementation must have the same

associated delay. Even though this is a very reasonable no-
tion of conformance, the fact that we assume a black-box
testing framework disallows us to check whether the cor-
responding random variables are identically distributed. In
fact, we would need and infinite number of observations
from a random variable of the implementation (with an un-
known distribution) to assure that this random variable is
distributed as another random variable from the specifica-
tion (with a known distribution). Thus, this notion is use-
ful only from a theoretical point of view since, under our
assumptions, it cannot be tested in finite time that an im-
plementation conforms with respect to a specification. We
have to give more realistic notion of temporal conformance
based on a finite set of observations that is less accurate but
that is checkable.

We introduce a new implementation relation that takes
into account a sample of time values. The idea is to compare
these time values with the random variable associated to it.

Definition 12 We say that a pair (ρ, t) is a timed sequence
if ρ is a sequence of inputs/outputs and t ∈ IR+.

Let Ψ = {ρ1, . . . , ρm} be a set of input/output se-
quences and H = {|(ρ′1, t1), . . . , (ρ′n, tn)|} be a multiset
of timed sequences. We say that Sampling(H,Ψ) : Ψ −→
℘(IR+) is a sampling application ofH for Ψ if for all ρ ∈ Ψ
we have Sampling(H,Ψ)(ρ) = {|t | (ρ, t) ∈ H|}.

Let I and S be two deterministic SSXMs. Let H =
{|(ρ1, t1), . . . , (ρp, tp)|} be a multiset of timed sequences
with ρj ∈ NSTraces(I) for all 1 ≤ j ≤ p. Let
0 ≤ α ≤ 1, Ψ = {ρ | ∃ t : (ρ, t) ∈ H} ∩
NSTraces(S), and let us consider Sampling(H,Ψ). We
say that I (α,H)−stochastically conforms to S, denoted by

Iconf(α,H)
s S, if IconfnsS and for all ρ ∈ Ψ we have that

(ρ, ξ) ∈ STraces(S) then γ(ξ,Sampling(H,Ψ)(ρ)) > α.
��

The idea underlying the new relation is that the imple-
mentation must conform to the specification in the usual
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way, that is, I confns S. Besides, for any trace of the im-
plementation performed by the specification, the time val-
ues associated to it in the sample fit the random variable
indicated by the specification. This notion of fitting is given
by the function γ that it is formally defined in the appendix
of this paper.

5. Definition and application of tests

A test consists of a sequence of inputs that will be ap-
plied to an IUT, a sequence of expected outputs and a ran-
dom variable that will be compared with the different time
values that the implementation spends for giving the re-
sponse. The ultimate goal of testing is to determine whether
the IUT is a correct implementation of the specification. On
the one hand, we must prove that the functions computed
by both SSXMs are identical, that is, we need to determine
the functional correctness of the IUT with respect to the
specification. On the other hand, we have to check the non-
functional correctness of the system, that is, the IUT fulfills
the temporal requirements established in the specification.
We will check that the time values the implementation takes
for performing each test match the random variable associ-
ated with the test. We will collect a sample of time values
(one for each test execution) and we will compare this sam-
ple with the random variable. By comparison we mean that
we will apply a contrast to decide, with a certain confidence,
whether the sample could be generated by the correspond-
ing random variable.

Definition 13 A test is a triplet T = (̄i, ō, ξ) where ī is a
sequence of inputs, ō is a sequence of outputs, having ī and
ō the same length, and ξ is a random variable.

Let T = (i1, . . . , ir, o1, . . . , or, ξ) be a test and ρ =
(i1/o1, . . . , ir/or) a sequence of iputs/outputs. We write
T

ρ�−→ ξ.
We say that I passes a set of tests T , denoted by

pass(I, T ), if for all test T = (̄i, ō, ξ) ∈ T we have
fI (̄i) = ō.

We say that ((i1/o1, . . . , in/on), t) is a timed execu-
tion of I if the observation of I shows that the sequence
(i1/o1, . . . , in/on) is performed in time t.

We denote the application of the test T to the implemen-
tation I as I ‖ T . We say that (ρ, t) is a test execution of
I and T if T

ρ�−→ ξ for some ξ ∈ V and (ρ, t) is a timed
execution of I. ��

Definition 14 Let I be a SSXM and T = {T1, . . . , Tn} be a
set of tests. Let H1, . . . ,Hn be test execution samples of I
and T1, . . . , Tn, respectively, and H =

⋃n
i=1Hi. Let Ψ =

{ρ | ∃ t : (ρ, t) ∈ H} and let us consider Sampling(H,Ψ).
Finally, let 0 ≤ α ≤ 1.

We say that the implementation I (α,H)−passes the set
of tests T if pass(I, T ) and for all ρ ∈ Ψ and all T ∈ T

such that T
ρ�−→ ξ we have γ(ξ,Sampling(H,Ψ)(ρ)) > α.

��

Intuitively, an implementation passes a set of tests if two
conditions hold. First, the output obtained by means of
the interaction with the implementation are those expected.
Once we know that the functional behavior of the imple-
mentation with respect to the set of tests is correct, we need
to check time conditions. The set H corresponds to the ob-
servations of the (several) applications of the tests belong-
ing to T to I . Thus, we have to decide whether, the ob-
served time values (that is, Sampling(H,Φ)(ρ)) match the
definition of the random variable appearing in the test cor-
responding to the execution of that sequence (that is, ξ). As
we commented previously, we assume a function γ that can
perform this hypothesis contrast. In the appendix of this pa-
per we give the technical details about the definition of this
function (we will use Pearson’s χ2 hypothesis contrast).

Next, we will adapt the testing method for determinis-
tic stream X-machines, developed by [21], that provides us
with a test set derived from the specification and allows to
determine the functional correctness of the implementation.
This method assumes the implementation has the same type
as the specification and that the processing functions are
correctly implemented, that is, they have been tested in ad-
vanced and are equivalent to the ones in the specification.
Testing is simplified then to determine whether these func-
tions have been combined correctly. This method is proved
to detect all the faults of the implementations considering
the system must satisfy some requirements, called design
for test. In fact, the method reduces the testing of SSXMs
to testing that their associated automata are equivalent. Af-
ter we obtain a test set for the associated automata, we will
translate, by means of the fundamental timed test function,
the processing functions sequences belonging to the test set
into triplets (input sequence, output sequence, random vari-
able) that will be used to test the SSXM. Let us note that in
the standard approach this function only translates the test
set for the associated automata to a set of input sequences.
When we deal with SSXMs we also need to check the cor-
rectness of the temporal requirements established for each
trace. Thus, the new fundamental timed test function must
provide us with the associated random variables in the spec-
ification that allow us to compare them with the time values
obtained from the interaction with the implementation.

Definition 15 Let X and X ′ be two deterministic SSXMs
with the same input alphabet I and output alphabet O.
Then, a finite set R ⊆ I∗ is a test set of X with respect
to X ′ if fX |R = fX′ |R implies fX = fX′ .

We say that Rs ⊆ I∗ × O∗ × V is a timed test set of X
with respect to X ′ if {̄i | ∃ ō, ξ : (̄i, ō, ξ) ∈ Rs} is a test set
of X with respect to X ′.
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We say that X and X ′ are testing compatible if they
have the same input actions, output actions, memory, ini-
tial memory values, and identical types. ��

The processing functions have to fulfill some require-
ments, called design for test conditions, that allow us to
translate the test set obtained from the associated FA into
a timed test set of the SSXM. These conditions are output-
distinguishability and input-completeness.

Definition 16 A type Φ is called output distinguishable if
for all φ1, φ2 ∈ Φ we have that there exists m ∈Mem and
i ∈ I such that φ1(m, i) = (o1,m1, ξ1) and φ2(m, i) =
(o2,m2, ξ2), implies that either φ1 = φ2 or o1 �= o2.

A type Φ is called input completed if for all m ∈ Mem
and all φ ∈ Φ there exists i ∈ I such that (m, i) ∈ dom(φ).

��

The first condition means that two different functions of
Φ cannot generate the same output for a given input i and
memory value m. We will be able to distinguish between
any two different processing functions observing outputs.
The second property ensures that any processing function
can be exercised from any memory value using the suitable
input.

We need a method that translates sequences of process-
ing functions, corresponding to the test set derived from the
FA, to sequences that can be applied to our systems. Next,
we introduce this function.

Definition 17 Let X = (I,O, S,Mem,Φ, F, s0,m0)
be a deterministic SSXM with type Φ input-complete. A
function Ω : Φ∗ → I∗ × O∗ × V is called a fundamental
timed test function if its definitions fulfills:

Ω (ε) = (ε, ε, θ)

Ω(φ̄φ) =




(̄ii, ōo, ξ) if φ̄ ∈ L(A(X)) ∧
Ω(φ̄) = (̄i, ō, ξ′) ∧
((m, ī), (ō, m′, ξ′)) ∈‖ φ̄ ‖ ∧
(m′, i) ∈ dom(φ) ∧
((m′, i), (o, m′′, ξ′′)) ∈‖ φ ‖ ∧
ξ = ξ′ + ξ′′

Ω(φ̄) if φ̄ /∈ L(A(X))

��

Let us remark that Ω is input-complete then, there always
exist ī.

The next theorem is the basis for deterministic SSXM
testing. It is a simple adaptation of a similar result appear-
ing in [21].

Theorem 2 Let X be a deterministic SSXM with type Φ
input-complete and output-distinguishable and X ′ a deter-
ministic SSXM testing compatible with X . If Ω is a funda-
mental timed test function of X and Z ⊆ Φ∗ is a test set

of A(X) with respect to A(X ′) then Ts = Ω(Z) is a timed
test set of X with respect to X ′. ��

Now we can use Theorems 1 and Theorem 2 to generate
a test set of a specification with respect to an implementa-
tion.

Theorem 3 Let S be a deterministic SSXM and I be a
deterministic SSXM testing compatible with S, with type
input-complete and output-distinguishable. Let n be the
number of states of S and m be the number of states of I.
Let AS and AI be their associated automata, respectively,
and Ω be a fundamental timed test function of S. Let P and
W , respectively, be a transition cover and a characterisation
set of S and Z = (Im−n ∪ . . .∪ I ∪ {ε})(W ∪ {ε}). Then,
Ts = Ω(P · Z) is a timed test set of S with respect to I.

��

In the following, for a given specification S, any timed
test set obtained by applying the method described in the
previous result will be denoted by tests(S).

Theorem 4 Let S be a deterministic SSXMs and I a deter-
ministic SSXM testing compatible with S, with type input-
complete and output-distinguishable. Let 0 ≤ α ≤ 1 andH
be a multiset of test executions of I and the tests belonging
to tests(S). We have that:

I (α,H)−stochastically conforms to S
�

I (α,H)−passes tests(S)

Proof : First, let us show that I (α,H)−passes tests(S)
implies I (α,H)−stochastically conforms to S. We will
use the contrapositive, that is, we will suppose that I
(α,H)−stochastically conforms to S does not hold and we
will prove that I does not (α,H)−passes tests(S). If I
(α,H)−stochastically conforms to S does not hold then we
have two possibilities:

1. Either I confns S does not hold, or

2. there exists ρ ∈ Ψ = {ρ : (ρ, t) ∈ H} ∩
NSTraces(S) such that (ρ, ξ) ∈ STraces(S) and
γ(ξ,Sampling(H,Ψ)(ρ)) > α does not hold.

Let us consider the first case, that is, we suppose that
I confns S does not hold. Then, we automatically infer
fI �= fS . By the previous theorem we have that tests(S)
is a timed test set of I with respect to S. By defini-
tion of timed test set, there exists (̄i, ō, ξ) ∈ tests(S)
such that fI (̄i) �= fS (̄i). Thus, we conclude I does not
(α,H)−passes tests(S) since fI (̄i) �= ō.

Now, let us suppose that I (α,H)−stochastically con-
forms to S does not hold due to the second case. If
ρ ∈ Ψ then there exists (ρ, t) ∈ H for some t ∈
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IR+. Since H is a test execution sample of I and the
tests belonging to tests(S), there exists T = (ρ, ξ) ∈
tests(S) such that T

ρ�−→ ξ. Since, we assumed that
γ(ξ,Sampling(H,Ψ)(ρ)) > α does not hold, we conclude
that I does not (α,H)−passes tests(S).

Let us prove now that I (α,H)−stochastically conforms
to S implies I (α,H)−passes tests(S). We will use
again the contrapositive, that is, we will assume that I does
not (α,H)−passes tests(S) and we will conclude that I
does not (α,H)−stochastically conforms to S. If I does
not (α,H)−passes tests(S) then we have two possibili-
ties:

1. Either pass(I,tests(S)) does not hold, or

2. there exists ρ ∈ Ψ and T ∈ tests(S) such that
T

ρ�−→ ξ and γ(ξ,Sampling(H,Ψ)(ρ)) > α does not
hold.

Let us consider the first case, that is, we suppose that
pass(I,tests(S)) does not hold. Then, there exists
(̄i, ō, ξ) ∈ tests(S) such that fI (̄i) �= ō. Thus, f |I �=
f |S and I confns S does not hold. We conclude I does
not (α,H)−stochastically conforms to S.

Now, we consider the second possibility. If ρ ∈ Ψ then
ρ ∈ NSTraces(S). If there exists T ∈ tests(S) such
that T

ρ�−→ ξ then there exists (ρ, ξ) ∈ STraces(S). Be-
sides, we have that γ(ξ,Sampling(H,Ψ)(ρ)) > α does not
hold. So, I does not (α,H)−stochastically conforms to S.

��

6. Conclusions

We have presented a methodology for testing temporal
aspects of systems where temporal behavior is critical. The
model introduced for specifying the systems is a suitable ex-
tension of the classical concept of stream X-machine, where
temporal requirements have been represented by means of
random variables. Implementation relations have been in-
troduced for describing the notion of conformance of an im-
plementation with respect to a specification up to a certain
degree of confidence.

The task of testing an implementation for conformance
to a specification, both modeled by means of deterministic
stochastic stream X-machines, has been tackled by adapting
the standard technique for stream X-machines based in the
W-method.

7 Appendix: Statistics Background: Hypoth-
esis Contrasts.

In this appendix we introduce one of the standard ways
to measure the confidence degree that a random variable has

on a sample. In order to do so, we will present a methodol-
ogy to perform hypothesis contrasts. The underlying idea is
that a sample will be rejected if the probability of observing
that sample from a given random variable is low. In prac-
tice, we will check whether the probability to observe a dis-
crepancy lower than or equal to the one we have observed
is low enough. We will present Pearson’s χ2 contrast. This
contrast can be applied both to continuous and discrete ran-
dom variables. The mechanism is the following. Once we
have collected a sample of size n we perform the following
steps:

• We split the sample into k classes which cover all the
possible range of values. We denote by Oi the ob-
served frequency at class i (i.e. the number of elements
belonging to the class i).

• We calculate the probability pi of each class, according
to the proposed random variable. We denote by Ei the
expected frequency, which is given by Ei = npi.

• We calculate the discrepancy between observed
frequencies and expected frequencies as X2 =∑k

i=1
(Oi−Ei)

2

Ei
. When the model is correct, this dis-

crepancy is approximately distributed as a random
variable χ2 .

• We estimate the number of freedom degrees of χ2 as
k − r − 1. In this case, r is the number of parameters
of the model which have been estimated by maximal
likelihood over the sample to estimate the values of pi

(i.e. r = 0 if the model completely specifies the values
of pi before the samples are observed).

• We will accept that the sample follows the proposed
random variable if the probability to obtain a discrep-
ancy greater or equal to the discrepancy observed is
high enough, that is, if X2 < χ2

α(k − r − 1) for some
α high enough. Actually, as such margin to accept the
sample decreases as α increases, we can obtain a mea-
sure of the validity of the sample as max{α | X2 <
χ2

α(k − r − 1)}.

According to the previous steps, we can now present an
operative definition of the function γ which is used in this
paper to compute the confidence of a random variable on a
sample.

Definition 18 Let ξ be a random variable and J be a mul-
tiset of real numbers representing a sample. Let X2 be the
discrepancy level of J on ξ calculated as explained above
by splitting the sampling space into k classes

C = {[0, a1), [a1, a2), . . . , [ak−2, ak−1), [ak−1,∞)}

where k is a given constant and for all 1 ≤ i ≤ k−1 we have
P (ξ ≤ ai) = i

k . We define the confidence of ξ on J with
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classesC, denoted by γ(ξ, J), as max{α|X2 < χ2
α(k−1)}.

��

The previous definition indicates that in order to perform
a contrast hypothesis, we split the collected values in
several intervals having the same expected probability. We
compute the value for X2 as previously described and
check this figure with the tabulated tables (see, for example,
www.statsoft.com/textbook/sttable.html)
corresponding to χ2 with k − 1 freedom degrees.

Let us comment some important details. First, given the
fact that the random variables that we use in our framework
denote the passing of time, we do not need classes to cover
negative values. Thus, we will suppose that the class con-
taining 0 will also contain all the negative values. Second,
let us remark that in order to apply this contrast it is strongly
recommended that the sample has at least 30 elements while
each class must contain at least 3 elements.

Example 2 Let us consider a device that produces real
numbers belonging to the interval [0, 1]. We would like
to test whether the device produces these numbers ran-
domly, that is, it does not have a number or sets of num-
bers that are more probable to be produced than other ones.
Thus, we obtain a sample from the machine and we ap-
ply the contrast hypothesis to determine whether the ma-
chine follows a uniform distribution in the interval [0, 1].
First, we have to decide how many classes we will use.
Let us suppose that we take k = 10 classes. Thus, for all
1 ≤ i ≤ 9 we have ai = 0.i and P (ξ ≤ ai) = i

10 . So,
C = {[0, 0.1), [0.1, 0.2) . . . [0.8, 0.9), [0.9,∞)}.

Let us suppose that the multiset of observed values, after
we sort them, is:

J =




∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0.00001, 0.002, 0.0876, 0.8,
0.1, 0.11, 0.123,
0.21, 0.22, 0.22, 0.2228, 0.23, 0.24, 0.28,
0.32, 0.388, 0.389, 0.391
0.4, 0.41, 0.42, 0.4333
0.543, 0.55, 0.57,
0.62, 0.643, 0.65, 0.67, 0.68, 0.689, 0.694
0.71, 0.711, 0.743, 0.756, 0.78, 0.788,
0.81, 0.811, 0.82, 0.845, 0.8999992,
0.91, 0.93, 0.94, 0.945, 0.9998

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣




Since the sample has 48 elements we have that
the expected frequency in each class, Ei, is equal to
4.8. In contrast, the observed frequencies, Oi, are
4, 3, 7, 4, 4, 3, 7, 6, 5, 5. Next, we have to compute

X2 =
10∑

i=1

(Oi − Ei)2

Ei
= 4.08333

Finally, we have to consider the table corresponding to
χ2 with 9 freedom degrees and find the maximum α such

that 4.08333 < χ2
α(9). We conclude that, with probability

α, the machine produces indeed random values. ��
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[29] N. López, M. Núñez, and F. Rubio. An integrated framework
for the analysis of asynchronous communicating stochastic
processes. Formal Aspects of Computing, 16(3):238–262,
2004.

[30] G. Luo, A. Petrenko, and G. v. Bochmann. Selecting test se-
quences for partially-specified nondeterministic finite state
machines. In 7th IFIP Workshop on Protocol Test Systems,
IWPTS’94, pages 95–110. Chapman & Hall, 1994.

[31] D. Mandrioli, S. Morasca, and A. Morzenti. Generating test
cases for real time systems from logic specifications. ACM
Transactions on Computer Systems, 13(4):356–398, 1995.

[32] E. Moore. Gedanken-experiments. In C. Shannon and
J. McCarthy, editors, Automata Studies. Princeton Univer-
sity Press, 1956.
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