### Impacto

### Downloads

Downloads per month over past year

Hernández, Francisco L. and Ruiz Bermejo, César
(2012)
*l(q)-structure of variable exponent spaces.*
Journal of Mathematical Analysis and Applications, 389
(2).
pp. 899-907.
ISSN 0022-247X

PDF
Restringido a Repository staff only 192kB |

Official URL: http://www.sciencedirect.com/science/article/pii/S0022247X11011504

## Abstract

It is shown that a separable variable exponent (or Nakano) function space L-p(.)(Ω) has a lattice-isomorphic copy of l(q) if and only if q is an element of Rp(.), the essential range set of the exponent function p(.). Consequently Rp(.) is a lattice-isomorphic invariant set. The values of q such that l(q) embeds isomorphically in L-p(.)(Ω) is determined. It is also proved the existence of a bounded orthogonal l(q)-projection in the space L-p(.)(Ω), for every q is an element of Rp(.)

Item Type: | Article |
---|---|

Uncontrolled Keywords: | Orlicz sequence-spaces; copies; variable exponent spaces; isomorphic l(p)-copies; bounded projections |

Subjects: | Sciences > Mathematics > Mathematical analysis |

ID Code: | 15969 |

Deposited On: | 16 Jul 2012 11:41 |

Last Modified: | 27 Jun 2018 07:25 |

### Origin of downloads

Repository Staff Only: item control page