Publication:
Estimates by polynomials

Research Projects
Organizational Units
Journal Issue
Abstract
Consider the following possible properties which a Banach space X may have: (P): If (x(j)) and (y(j)) are are bounded sequences in X such that for all n greater than or equal to 1 and for every continuous n-homogeneous polynomial P on X, P(x(j)) - P(y(j)) --> 0, then, Q(x(j) - y(j)) --> 0 for all m greater than or equal to 1 and for every continuous us m-homogeneous polynomial Q on X. (RP): If (x(j)) and (y(j)) are bounded sequences in X such that for all n greater than or equal to 1 and for every continuous n-homogeneous polynomial P on X, P(x(j) - y(j)) --> 0, then Q(x(j)) - Q(y(j)) --> 0 for all m greater than or equal to 1 and for every continuous m-homogeneous polynomial Q on X. We study properties (P) and (RP) and their relation with the Schur property, Dunford-Pettis property, Lambda, and others. Several. applications of these properties are given.
Description
Unesco subjects
Keywords
Citation
Alencar, R., Aron, R.M. and Dineen, S., ‘A reflexive space of holomorphic functions in infinitely many variables’, Proc. Amer. Math. Soc. 90 (1984), 407–411. Aron, R.M. and Galindo, P., ‘Weakly compact multilinear mappings’, (preprint). Aron, R.M. and Prolla, J.B., ‘Polynomial approximation of differentiable functions on Banach spaces’, J. Reine Agnew. Math. 313 (1980), 195–216. Carne, T., Cole, B. and Gamelin, T., ‘A uniform algebra of analytic functions on a Banach space’, Trans. Amer. Math. Soc. 314 (1989), 639–659. Castillo, J.F. and Sanchez, C., ‘Weakly-p-compact, p-Banach-Saks and super-reflexive Banach spaces’, J. Math. Anal. Appl. 185 (1994), 256–261. Choi, Y.S. and Kim, S.G., ‘Polynomial properties of Banach spaces’, J. Math. Anal. Appl. 190 (1995), 203–210. Davie, A.M. and Gamelin, T.W., ‘A theorem on polynomial-star approximation’, Proc. Amer. Math. Soc. 106 (1989), 351–358. Diestel, J., ‘A survey of results related to the Dunford-Pettis property’, in Contemp. Math. 2 (Amer. Math. Soc., Providence, R.I., 1980), pp. 15–60. Diestel, J., Geometry of Banach spaces, Lecture Notes in Mathematics 485 (Springer-Verlag, Berlin, Heidelberg, New York, 1975). Van Dulst, D., Reflexive and super-reflexive spaces, Math. Centre Tracts 102 (Amsterdam, 1982). Dunford, N. and Schwartz, J.T., Linear Operators, Part I, General Theory (J. Wiley, New York, 1964). Farmer, J.D., ‘Polynomial reflexivity in Banach spaces’, Israel J. Math. 87 (1994), 257–273. Farmer, J.D. and Johnson, W.B., ‘Polynomial Schur and polynomial Dunford-Pettis properties’, in Proc. Intern. Research Workshop on Banach Space Theory (Mérida, Venezuela), (Johnson, W.B. and Lin, B.L., Editors) (Amer. Math. Soc., Providence, RI, 1993), pp. 95–105. Jaramillo, J.A. and Prieto, A., ‘Weak-polynomial convergence on a Banach space’, Proc. Amer. Math. Soc. 118 (1993), 463–468. Josefson, B., ‘Bounding subsets of ℓ∞ (A)’, J. Math. Pures Appl. 57 (1978), 397–421. Grothendieck, A., ‘Sur les applications linéaires faiblement compactes d'espaces du type C(K)’, Canad. J. Math. 5 (1953), 129–173. Pelczynski, A., ‘A property of multilinear operations’, Studia Math. 16 (1957), 173–182. Petunin, Y.I. and Savkin, V.I., ‘Convergence generated by analytic functions’, Ukranian. Math. J. 40 (1988), 676–679. Rosenthal, H.P., ‘Some recent discoveries in the isomorphic theory of Banach spaces’, Bull. Amer. Math. Soc. 84 (1980), 803–831. Ryan, R.A., ‘Dunford-Pettis properties’, Bull. Acad. Polon. Sci. Math. 27 (1979), 373–379.
Collections