Publication:
Equilibrium Convection on a Tidally Heated and Stressed Icy Shell of Europa for a Composite Water Ice Rheology

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2010
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer Science Business Media
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Water ice I rheology is a key factor for understanding the thermal and mechanical state of the outer shell of the icy satellites. Ice flow involves several deformation mechanisms (both Newtonian and non-Newtonian), which contribute to different extents depending on the temperature, grain size, and applied stress. In this work I analyze tidally heated and stressed equilibrium convection in the ice shell of Europa by considering a composite viscosity law which includes diffusion creep, basal slip, grain boundary sliding and dislocation creep, and. The calculations take into account the effect of tidal stresses on ice flow and use grain sizes between 0.1 and 100 mm. An Arrhenius-type relation (useful for parameterized convective models) is found then by fitting the calculated viscosity between 170 and 273 K to an exponential regression, which can be expressed in terms of preexponential constant and effective activation energy. I obtain convective heat flows between *40 and *60 mW m-2, values lower than those usually deduced (*100 mW m-2) from geological indicators of lithospheric thermal state, probably indicating heterogeneous tidal heating. On the other hand, for grain sizes larger than *0.3 mm the thicknesses of the ice shell and convective sublayer are*20–30 km and*5–20 km respectively, values in good agreement with the available information for Europa. So, some fundamental geophysical characteristics of the ice shell of Europa could be arising from the properties of the composite water ice rheology.
Description
UCM subjects
Unesco subjects
Keywords
Citation
Collections