Impacto
Downloads
Downloads per month over past year
Makarov, Valeri A. and Ebeling, Werner and Velarde, Manuel G. (2000) Soliton-like waves on dissipative Toda lattices. International Journal of Bifurcation and Chaos, 10 (5). pp. 1075-1089. ISSN 0218-1274
Official URL: http://www.worldscientific.com/doi/abs/10.1142/S0218127400000761
Abstract
Dissipative soliton-like waves in 1D Toda lattices generated by suitable energy supply from external sources have been studied. Using the general theory of canonical-dissipative systems we have constructed a special canonical-dissipative system whose solution starting from an arbitrarily initial condition decays to a solution of the standard, conservative Toda system. The energy of the final state may be prescribed beforehand. We have also studied the influence of noise and have calculated the distribution of probability density in phase space and the energy distribution. Other noncanonical models of energy input, including nonlinear nearest neighbor coupling and "Rayleigh" friction, have been analyzed. We have shown under what conditions the lattices can sustain the propagation of stable solitary waves and wave trains.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Marangoni-benard convection; Annular containers; Trains; Instability; Equation; Motions; Layers |
Subjects: | Sciences > Mathematics > Functions |
ID Code: | 17070 |
Deposited On: | 13 Nov 2012 10:17 |
Last Modified: | 12 Dec 2018 15:07 |
Origin of downloads
Repository Staff Only: item control page