Impacto
Downloads
Downloads per month over past year
Bombal Gordón, Fernando (1973) Invariant measures with values in locally convex spaces. (Spanish: Medidas invariantes con valores en espacios localmente convexos). In Actas de las primeras jornadas luso-españolas : celebradas en Lisboa durante los dias 4 al 8 de abril, 1972. Instituto Jorge Juan de Matemáticas, Madrid, pp. 148-154. ISBN 8400039483
Abstract
Let E be a locally compact space, and X a locally convex (real or complex) Hausdorff quasicomplete
vector space. Let μ0 be a positive Radon measure on E; corresponding to this measure
the author defines a certain measure μ on E with values on X. In the case in which E is a locally
compact topological group, and μ0 a left [right] Haar measure, μ is also a left [right] Haar measure.
Let T:X !X be a continuous linear mapping, and μ a left [right] Haar measure on E with values
on X; then T ·μ is also a left [right] Haar measure. Conversely, let μ be a left [right] Haar measure
on E with values on X, let be any left [right] Haar measure on E with values on X; the author
proves that = T · μ, where T:X ! X is a continuous linear mapping. This generalizes the
known theorem of H. Weyl on positive Haar measures.
Item Type: | Book Section |
---|---|
Uncontrolled Keywords: | Invariant measures;Haar measure. |
Subjects: | Sciences > Mathematics > Mathematical analysis |
ID Code: | 17743 |
Deposited On: | 17 Jan 2013 09:02 |
Last Modified: | 25 Jan 2013 14:27 |
Origin of downloads
Repository Staff Only: item control page