Publication:
On global Nash functions

Loading...
Thumbnail Image
Full text at PDC
Publication Date
1994
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Société Mathématique de France
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Let M superset-of R be a compact Nash manifold, and N (M) [resp. O(M)] its ring of global Nash (resp. analytic) functions. A global Nash (resp. analytic) set is the zero set of finitely many global Nash (resp. analytic) functions, and we have the usual notion of irreducible set. Then we say that separation holds for M if every Nash irreducible set is analytically irreducible. The main result of this paper is that separation holds if and only if every semialgebraic subset of M described by s global analytic inequalities can also be described by s global Nash inequalities. In passing, we also prove that when separation holds, every Nash function on a Nash set extends to a global Nash function on M.
Description
Keywords
Citation
C. ANDRADAS, L. BRÖCKER and J. M. RUIZ, Minimal Generation of Basic Open Semianalytic Sets (Invent. Math., Vol. 92, 1988, pp. 409-430). C. ANDRADAS, L. BRÖCKER and J. M. RUIZ, Real Algebra and Analytic Geometry, in preparation. M. ARTIN, On the Solutions of Analytic Equations (Invent. Math., Vol. 5, 1988, pp. 277-291). L. BERETTA and A. TOGNOLI, Nash Sets and Global Equations (Bollettino U.M.I., Vol. 7, 1990, pp. 31-44). J. BOCHNAK, M. COSTE and M.-F. ROY, Géométrie algébrique réelle (Ergeb. Math., Vol. 12, Springer-Verlag, Berlin-Heidelberg-New York, 1987). J. BOCHNAK and G. EFROYMSON, An Introduction to Nash Functions, in Géométrie algébrique réelle et formes quadratiques, pp. 41-54 (Lecture Notes in Math., No. 959, Springer-Verlag, Berlin-Heidelberg-New York, 1982). N. BOURBAKI, Commutative Algebra, Hermann, Paris, 1972. L. BRÖCKER, On the Stability Index of Noetherian Rings, in Real Analytic and Algebraic Geometry, pp. 72-80 (Lecture Notes in Math., No. 1420, Springer-Verlag, Berlin-Heidelberg-New York, 1990). L. BRÖCKER, On Basic Semialgebraic Sets (Expo. Math., Vol. 9, 1991, pp. 289-334). F. BRUHAT and H. WHITNEY, Quelques propriétés fondamentales des ensembles analytiques réels (Comment. Math. Helv., Vol. 33, 1959, pp. 132-160). H. CARTAN, Variétés analytiques réelles et variétés analytiques complexes (Bull. Soc. Math. France, Vol. 85, 1957, pp. 77-99). M. COSTE and C. DIOP, Problems About Nash Functions, talk in Reelle algebraische Geometrie, Oberwolfach, June 1990. L. VAN DEN DRIES, Model Theory of Fields (Thesis, Utrecht, 1978). G. EFROYMSON, Nash Rings in Planar Domains (Trans. Amer. Math. Soc., Vol. 249, 1979, pp. 435-445). G. EFROYMSON, The Extension Theorem for Nash Functions, in Géométrie algébrique réelle et formes quadratiques, pp. 343-357 (Lecture Notes in Math., No. 959, Springer-Verlag, Berlin-Heidelberg-New York 1982). O. ENDLER, Valuation Theory, Universitext, Springer-Verlag, Berlin-Heidelberg-New York, 1970. T. Y. LAM, Orderings, Valuations and Quadratic Forms (Reg. Conf. Math., Vol. 52, AMS, 1983). H. MATSUMURA, Commutative Algebra, second edition (Math. Lecture Note Series, Vol. 56, Benjamin, London-Amsterdam-Tokyo, 1980). M. NAGATA, Local Rings (Intersc. Tracts Math., Vol. 13, John Wiley & Sons, New York-London, 1962). D. PECKER, On Efroymson's Extension Theorem for Nash Functions (J. Pure Appl. Algebra, Vol. 37, 1985, pp. 193-203). A. PRESTEL, Pseudo Real Closed Fields, in Set Theory and Model Theory, pp. 127-156 (Lecture Notes in Math., No. 872, Springer-Verlag, Berlin-Heidelberg-New York 1981). | Ch. ROTTHAUS, On the Approximation Property of Excellent Rings (Invent. Math., Vol. 88, 1987, p. 39-63). J. M. RUIZ, On Hilbert's 17th Problem and Real Nullstellensatz for Global Analytic Functions (Math. Z., Vol. 190, 1985, pp. 447-459). J. M. RUIZ, On the Real Spectrum of a Ring of Global Analytic Functions (Publ. Inst. Recherche Math. Rennes, Vol. 4, 1986, pp. 84-95). J. M. RUIZ, A Going-Down Theorem for Real Spectra (J. of Algebra, Vol. 124, No. 2, 1989, pp. 278-283). J. M. RUIZ and M. SHIOTA, Equivalence of Important Problems on Nash Functions (to appear). M. SHIOTA, Sur la factorialité de l'anneau des fonctions lisses rationnelles (C. R. Acad. Sci. Paris, Vol. 292, Séries I, 1981, pp. 67-70. M. SHIOTA, Nash Manifolds (Lecture notes in Math., No. 1269, Springer-Verlag, Berlin-Heidelberg-New York, 1987). M. SHIOTA, Extension et factorisation de fonctions de Nash C∞ (C. R. Acad. Sci. Paris, Vol. 308, Séries I, 1989, pp. 253-256). A. TANCREDI and A. TOGNOLI, On the Extension of Nash Functions (Math. Ann., Vol. 288, 1990, pp. 595-604). J.-C. TOUGERON, Idéaux de fonctions différentiables (Ergeb. Math., Vol. 71, Springer-Verlag, Berlin-Heidelberg-New York, 1972).
Collections