Publication:
Approximation in compact Nash manifolds

Loading...
Thumbnail Image
Full text at PDC
Publication Date
1995-08
Authors
Coste, M.
Shiota, Masahiro
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Johns Hopkins Univ Press
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Let Ω⊂Rn be a compact Nash manifold; A,B the rings of Nash, analytic global functions on Ω. The main result of this paper is the following: Theorem 1. Let Ω,Ω′ be a pair of Nash submanifolds of some Rn ,Rq and let us suppose Ω is compact. Let F1,⋯,Fq:Ω×Ω′→R be Nash functions. Then every analytic solution y=f(x) of the system F1(x,y)=⋯=Fq(x,y)=0 can be approximated, in the Whitney topology, by the global Nash solutions y=g(x). The main tool used to prove the above results is this version of Néron's desingularisation theorem: Any homomorphism of A-algebras C→B, with C finitely generated over A, factorizes through a finitely generated A-algebra D such that A→D is regular. Using Theorem 1 the authors are able to solve several interesting problems that have been open for many years. For example they prove: (I) Every analytic factorization of a global Nash function, defined over Ω, is equivalent to a Nash factorization. (II) Every semialgebraic subset of Ω which is a global analytic subset is also a global Nash subset. (III) Every prime ideal of A generates a prime ideal in B. (IV) Every coherent ideal subsheaf of the sheaf N(Ω) of Nash functions on Ω is generated by its global sections. The case where Ω is noncompact is only partially studied in this paper. In the reviewer's opinion this article makes crucial progress in the theory of global Nash functions.
Description
Keywords
Citation
C. Andradas, L. Bröcker, and J. M. Ruiz, Minimal generation of basic open semialgebraic sets, Invent. Math. 92 (1988), 409-430. C. Andradas, L. Bröcker, and J. M. Ruiz , Constructible sets in real geometry, in preparation. M. André, Cinq exposés sur la désingularization, preprint, 1991. M. Artin, On the solutions of analytic equations, Invent. Math. 5 (1968), 277-29 1. M. Artin Algebraic approximations of structures over complete local rings, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 23-58. M. Artin and B. Mazur, On periodic points, Ann. of Math. 81 (1965), 82-99. R. Benedetti and A. Tognoli, On real algebraic vector bundles, Bull. Sci. Math. 104 (1980), 89-102. J. Bochnak, M. Coste, and M.-F. Roy, Géométrie algébrique réelle, Ergeb. Math. Grenzgeb., vol. 12, Springer-Verlag, New York, 1987. J. Bochnak and G. Efroymson, An introduction to Nash functions, Géométrie Algébrique Réelle et Formes Quadratiques, Lecture Notes in Math., vol. 959, Springer-Verlag, New York, 1982, pp. 41-54. J. Bochnak and W. Kucharz, Local algebraicity of analytic sets, J. Reine. Angew. Math. 352 (1984), 1-14. J.-L. Colliot-Thélène, Variantes du Nullstellensatz réel et anneaux formellement réels, Géométrie Algébrique Réelle et Formes Quadratiques, Lecture Notes in Math., vol. 959, Springer- Verlag, New York, 1982, 98-108. M. Coste, J. M. Ruiz, and M. Shiota, Equivalence of important problems on Nash functions, in preparation. G. Efroymson, Nash rings in planar domains, Trans. Amer Math. Soc. 249 (1979), 435-445. G. Efroymson, The extension theorem for Nash functions, Géométrie Algébrique Réelle et Formes Quadratiques, Lecture Notes in Math., vol. 959, Springer-Verlag, New York, 1982, pp. 343- 357. J. Hubbard, On the cohomology of Nash sheaves, Topology 11 (1972), 265-270. H. Matsumura, Commutative Algebra, 2nd ed., Math. Lecture Note Series, vol. 56, Benjamin, Read ing, MA, 1980. J. Nash, Real algebraic manifolds, Ann. of Math. 56 (1952), 405-421. D. Pecker, On Efroymson's extension theorem for Nash functions, J. Pure Appl. Algebra 37 (1985), 193-203. D. Popescu, General Néron desingularization, Nagoya Math. J. 100 (1985), 97-126. J. M. Ruiz, On Hilbert's 17th problem and real Nullstellensatz for global analytic functions, Math. Z. 190 (1985), 447-459. J. M. Ruiz, On the real spectrum of a ring of global analytic functions, Publ. Inst. Recherche Math. Rennes 4 (1986), 84-95. J. M. Ruiz and M. Shiota, On global Nash functions, Ann. Sci. École Norm. Sup. (to appear). M. Shiota, Nash manifolds, Lecture Notes in Math., vol. 1269, Springer-Verlag, New York, 1987. M. Shiota, Extension et factorisation de fonctions de Nash C∞, C. R. Acad. Sci. Paris Ser I Math. 308 (1989), 253-256. M. Spivakovski, Smoothing of ring homomorphisms, approximation theorems and the Bass-Quillen conjecture, preprint, 1992. A. Tancredi and A. Tognoli, On the extension of Nash functions, Math. Ann. 288 (1990), 595-604. A. Tognoli, Algebraic geometry and Nash functions, Institutiones Math., vol. 3, Academic Press, New York, 1978. J.-C. Tougeron, Ideaux de fonctions differentiables, Ergeb. Math., vol. 71, Springer-Verlag, New York, 1972. 0. Zariski and P. Samuel, Commutative Algebra I, Graduate Texts in Math., vol. 98, Springer-Verlag, New York, 1979.
Collections