Publication:
Water uptake and salt transport through Nafion cation-exchange membranes with different thicknesses

Research Projects
Organizational Units
Journal Issue
Abstract
The water uptake of different aqueous salt solutions in different Nafion membranes, and the salt transport through those membranes under the driving force of a concentration gradient, have been studied. These experiments have been performed by using the following salts: lithium chloride, sodium chloride, potassium chloride and cesium chloride. Different homogeneous Nafion membranes, NF111, NF112, NF115 and NF117, have been used in this work, with the aim of studying the membrane thickness influence. It has been observed that the membrane water uptake increases with the membrane thickness and decreases with the size of the cation. The integral permeability coefficient has been determined from the time evolution of the salt concentration in the dilute solution. The results show that the integral permeability coefficient decreases with the membrane thickness. In general, the influence of the type of electrolyte on the integral permeability coefficient is not significant for the membranes with larger thickness (that is, NF115 and NF117). Average apparent cation transport number has been determined for the same salt solutions, and from that membrane apparent permselectivity has been estimated. In general, in membranes with large thickness, the average apparent cation transport number increases with the cation size. Finally, from fluxes and membrane potentials membrane negative ionic permeabilities have been determined finding also that they decrease with membrane thickness. Salt diffusion coefficient has been also determined from membrane negative ionic diffusion coefficient.
Description
© 2011 Elsevier Ltd. Financial support from Banco de Santander and Universidad Complutense de Madrid under Project GR35/10–910358 is gratefully acknowledged.
UCM subjects
Unesco subjects
Keywords
Citation
Berezina,N.P.,Kononenko,N.A.,Dyomina,O.A.,Gnusin,N.P.,2008. Characterization of ion-exchange membrane materials: properties vs structure. Adv. Colloid Interface Sci.139,3–28. Barragán, V.M., Ruíz-Bauza, C.,1999. Membrane potentials and electrolyte permeation in a cation-exchange membrane.J.Membr.Sci.154,261–272. Barragán, V.M., Ruíz-Bauzá C.,1997. Determination of diffusion salt flow through membranes from measurements of electric conductance. J. Non-Equilib. Thermodyn. 22,34–47. Barragán, V.M., Ruiz-Bauzá,C., Villaluenga, J.P.G., Seoane, B., 2004. Transport of methanol and water through Nafion membranes. J. Power Sources130, 22–29. Barragán, V.M., Pérez-Haro, M.J., 2011. Correlations between water uptake and effective fixed charge concentration at high univalent concentrations in sulfonated polymer cation-exchange membranes withdifferent morphology. Electrochim. Acta56, 8630–8637. Barragán, V.M., Rueda, C., Ruiz-Bauzá, C., 1995.On the fixed charge concentration and the water electroosmotict ransport in a cellulose-acetate membrane. J. Colloid Interface Sci.172(2), 361–367. Cañas, A., Ariza, M.J., Benavente, J., 2002. A comparison of electrochemical and electrokinetic parameters determined for cellophane membranes in contact with NaCl and NaNO3 solutions. J.Colloid Interface Sci. 246, 150–156. Cabasso, I., Liu, Z., Makenzie, T., 1986. The permselectivity of ion-exchange membranes for non-electrolyte liquid mixtures. II. The effect of counterions (separation of alcohol/water mixtures with Nafion membranes). J. Membr. Sci. 28, 109–122. Delmotte, M., Chanu, J., 1973. Realisation experimentale d’un gradient de concentration ionique maintenu constant. Electrochim.Acta18,963–966. Dalla Costa, R.F., Ferreira, J.Z., Deslouis, C., 2003. Electrochemical study of the interactions between trivalent chromium ions and Nafions perfluorosulfo-nated membranes. J.Membr.Sci. 215,115–128. Filippov, A.N., Starov, V.M., Kononenko, N.A., Berezina, N.P., 2008.Asymmetry of diffusion permeability of bi-layer membranes. Adv. ColloidI nterface Sci.139, 29–44. Godino, M.P., Barragán, V.M., Villaluenga, J.P.G., Ruiz-Bauzá, C., Seoane, B., 2006. Water and methanol transport in Nafion membranes with different cationic forms: 1.Alkali monovalent cations. J.Power Sources160, 181–186 Goswami,A., Acharya, A., Pandey, A.K., 2001. Study of self-diffusion of monovalent and divalent cations in Nafion-117 ion-exchange membrane. J. Phys. Chem. B 105, 9196–9201 Hills,G.J., Jacobs, P.W.M., Laksminarayanaiah, N., 1961. Membrane potentials I, the theory of the e.m.f. of cells containing ion-exchange membranes. Proc. R. Soc. A 262,246–256. Helfferich, F., 1962. Ion Exchange. McGraw-Hill Book Company, New York Ibañez, J.A., Tejerina, A.F., Garrido, J., Pellicer, J., 1980. Diffusion salt flow through membranes and permeability from cell potential measurements. J. Non- equilib. Thermodyn.5, 313–324 Izquierdo-Gil, M.A., Barragán, V.M., Godino, M.P., Villaluenga, J.P.G., Ruiz-Bauzá, C., Seoane, B., 2009. Salt diffusion through cation-exchange membranes in alcohol–water solutions.Sep.Purif.Technol.64, 321–325 Janz, G.J., Ives, D.J.G., 1961. Silver–silver halide electrode, Reference Electrodes: Theory and Practice. Academic Press Inc., New York, USA., pp. 179-230. Jonquieres, A., Perrin, L., Durand, A., Arnold, S., Lochon, P., 1998a. Modelling of vapour sorption in polar materials: comparison of Flory–Huggins and related models with the ENSIC mechanistic approach. J. Membr. Sci. 147, 59–71. Jonquieres, A., Perrin, L., Arnold, S., Lochon, P., 1998b. Comparison of UNIQUAC with related models for modelling vapour sorption in polar materials. J. Membr. Sci. 150, 125–141. Koter, S., Zator, M., 2004. Determination of the electrolyte and osmotic perme- ability coefficients by conductometric and emf methods. Desalination 162, 373–381. Kauranen, P.S., Skou, E., 1996. Methanol permeability in perfluorosulfonate proton exchange membranes at elevated temperatures. J. Appl. Electrochem. 26, 909–917 Lakshminarayanaiah, N., 1969. Transport Phenomena in Membranes. Academic Press, New York. Lehmani, A.,Turq, P., Périé, M., Périé, J., Simonin., J.P., 1997. Ion transportin Nafions 117 membrane. J. Electroanal. Chem. 428,81–89 Lindheimer, A., Molenat, J., Gavach, C., 1987. A study of the superselectivity of Nafion perfluorosulfonic membranes. J. Electroanal. Chem. 216, 71–78. Larchet, C., Auclair, B., Nikonenko, V., 2004. Approximate evaluation of water transport number in ion-exchange membranes. Electrochim. Acta 49 (11), 1711–1717. Lobo, V.M., Quaresma, J.L., 1989. Handbook of Electrolyte Solutions, Parts A and B. Elsevier, Amsterdam. Matsumoto, H., Yamamoto, R., Tanioka, A., 2005. Membrane potential across low- water-content charged membranes: effect of ion pairing. Phys. Chem. B 109 (29), 14130–14136 Novikova, S.A., Volodina, E.I., Pis’menskaya, N.D., Veresov, A.G., Stenina, I.A., Yaroslavtsev, A.B., 2005. Ionic transport in cation-exchange membranes MK- 40 modified with zirconium phosphate. Russ. J. Electrochem. 41 (10), 1070–1076 Onuchukwu, A.I., Trasatti, S.P., Trasatti, S., 1994. Hydrogen permeation into aluminium AA1060 as a result of corrosion in an alkaline medium influence of anions in solution and of temperature. Corros. Sci. 36 (Issue 11), 1815–1817. Okada, T., Satou, H., Okuno, M., Yuasa, M., 2002. Ion and water transport characteristics of perfluorosulfonated ionomer membranes with Hþ and alkali metal cations. J. Phys. Chem. B.106(6), 1267–1273 Pourcelly, G., Oikonomou, A., Gavach, C., 1990. Influence of the water content on the kinetics of counter-ion transport in perfluorosulphonic membranes. J. Electroanal. Chem. 287, 43–59. Robinson, R.A., Stokes, R.H., 2003. Electrolyte Solutions, 2nd Revised Dover Publications Inc. Staverman, A.J., 1952. Non-equilibrium thermodynamics of membrane processes. Trans. Faraday Soc. 48, 176–185. Scott, D., Taama, W., Argyropoulos, P., 1998. Material aspects of the liquid feed direct methanol fuel cell. J. Appl. Electrochem. 28, 1389–1397. Suresh, G., Scindia, Y.M., Pandey, A.K., Goswami, A., 2005. Self-diffusion coefficient of water in Nafion-117 membrane with different monovalent counterions: a radiotracer study. J. Membr. Sci. 250, 39–45. Stenina, I.A., Sistat, Ph., Rebrov, A.I., Pourcelly, G., Yaroslavtsev, A.B., 2004. Ion mobility in Nafion-117 membranes. Desalination 170, 49–57. Villaluenga, J.P.G., Seoane, B., Barragán, V.M., Ruiz-Bauzá, C., 2006. Thermo osmosis of mixtures of water and methanol through a Nafion membrane. J. Membr. Sci.274,116–122. Villaluenga, J.P.G., Barragán, V.M., Seoane, B., Ruiz-Bauzá, C., 2006. Sorption and permeation of solutions of chloride salts,water and methanol in aNafion membrane. Electrochim. Acta51, 6297–6303. Xu, T., 2005. Ion exchange membranes: state of their development and perspec- tive. J. Membr. Sci. 263, 1–29. Xie, G., Okada, T., 1996. Pumping effects in water movement accompanying cation transport across Nafion 117 membranes. Electrochim. Acta 41 (9), 1569–1571. Xue, T., Longwell, R.B., Osseo-Asare, K., 1991. Mass transfer in Nafion membranes systems: effects of ionic size and charge on selectivity. J. Membr. Sci. 58, 175–189.
Collections