Publication:
Critical role of two-dimensional island-mediated growth on the formation of semiconductor heterointerfaces

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2012-09-18
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We experimentally demonstrate a sigmoidal variation of the composition profile across semiconductor heterointerfaces. The wide range of material systems (III-arsenides, III-antimonides, III-V quaternary compounds, III-nitrides) exhibiting such a profile suggests a universal behavior. We show that sigmoidal profiles emerge from a simple model of cooperative growth mediated by two-dimensional island formation, wherein cooperative effects are described by a specific functional dependence of the sticking coefficient on the surface coverage. Experimental results confirm that, except in the very early stages, island growth prevails over nucleation as the mechanism governing the interface development and ultimately determines the sigmoidal shape of the chemical profile in these two-dimensional-grown layers. In agreement with our experimental findings, the model also predicts a minimum value of the interfacial width, with the minimum attainable value depending on the chemical identity of the species.
Description
© American Physical Society
Unesco subjects
Keywords
Citation
[1] M.J. Hytch, M.G. Walls, and J.P. Chevalier, Ultramicroscopy 83, 217 (2000). [2] O. Hulko, D.A. Thompson, and J.G. Simmons, IEEE J. Sel. Top. Quant. Electron. 14, 1104 (2008). [3] O. Hulko, D.A. Thompson, B.J. Robinson, and J.G. Simmons, J. Appl. Phys. 105, 073507 (2009). [4] E. Luna, F. Ishikawa, P.D. Batista, and A. Trampert, Appl. Phys. Lett. 92, 141913 (2008). [5] E. Luna, F. Ishikawa, B. Satpati, J. Rodriguez, E. Tournié, and A. Trampert, J. Crystal Growth 311, 1739 (2009). [6] E. Luna, B. Satpati, J.B. Rodriguez, A.N. Baranov, E. Tournié, and A. Trampert, Appl. Phys. Lett. 96, 021904 (2010). [7] M. Müller, B. Gault, M. Field, G.J. Sullivan, G.D.W. Smith, and C.R.M. Grovenor, Appl. Phys. Lett. 100, 083109 (2012). [8] The layers exhibit coherent interfaces and a structural interfacial roughness of ±1ML. [9] K.W. Kolasinski, Surface Science: Foundations of Catalysis and Nanoscience, 2nd ed. (John Wiley & Sons, Chichester, 2008). [10] Optimized growth conditions refer to 2D grown heterostructures with smooth and coherent interfaces. [11] For instance, L=1.6 ML for Al_0.3Ga_0.7As/GaAs grown at Ts = 580C; L = 1.3 ML for In_0.4Ga_0.6As/GaAs grown at Ts = 420C; whereas L = 1 ML for In_0.5Ga_0.5As/GaSb grown at Ts = 420C. Furthermore, in high-quality dilutenitride(In,Ga)(As,N)/GaAs QWs, L_In = 1.4 − 1.6ML and L_N = 1 − 1.3ML regardless of T_s = 375C or 420C,even if grown at different laboratories. [12] Y. Zhang, L. R. Manning, J. Falcone, O. Platt, and J. M. Manning, J. Biol. Chem. 278, 39565 (2003); H.W. Ducklow and S.M. Hill, Limnol. Oceanogr. 30, 239 (1985); F. Gugumus, Polym. Degrad. Stabil. 52, 159 (1996). [13] O.M. Becker and A. Ben-Shaul, Phys. Rev. Lett. 61, 2859 (1988). [14] O.M. Becker, J. Chem. Phys. 96, 5488 (1992). [15] T. Litz, T. Behr, D. Hommel, A. Waag, and G. Landwehr, J. Appl. Phys. 72, 3492 (1992). [16] P. Kisliuk, J. Phys. Chem. Solids 3, 95 (1957). [17] E.S. Hood, B.H. Toby, and W.H. Weinberg, Phys. Rev. Lett. 55, 2437 (1985). [18] J.W. Evans, Rev. Mod. Phys. 65, 1281 (1993). [19] Eden growth was introduced in M. Eden, Proc. Fourth Berkeley Symp. on Math. Statist. and Prob. 4, 223 (1961) as a model for the formation of cell colonies in which each cluster grows following a simple geometrical rule: starting from an already existing single occupied lattice site or nucleation center, empty adjacent sites are occupied in each subsequent growth step; as a result of this mechanism Eden clusters have a compact structure. [20] T. Taliercio, A. Gassenq, E. Luna, A. Trampert, and E. Tournié, Appl. Phys. Lett. 96, 062109 (2010). [21] K. Mahalingam, K.G. Eyink, G.J. Brown, D.L. Dorsey, C.F. Kisielowski, and A. Thust, Appl. Phys. Lett. 88, 091904 (2006). [22] J.M. Chauveau, A. Trampert, K.H. Ploog, and E. Tournié, Appl. Phys. Lett. 84, 2503 (2004). [23] T.J. Prosa, P.H. Clifton, H. Zhong, A. Tyagi, R. Shivaraman, S.P. DenBaars, S. Nakamura, and J.S. Speck, Appl. Phys. Lett. 98, 191903 (2011). [24] P. Kratzer and M. Scheffler, Phys. Rev. Lett. 88, 036102 (2002). [25] M.A. Herman,W. Richter, and H. Sitter, Epitaxy: Physical Principles and Technical Implementation (Springer Verlag, Berlin, 2004). [26] M. Suemitsu, Y. Enta, Y. Miyanishi, and N. Miyamoto, Phys. Rev. Lett. 82, 2334 (1999). [27] S. Ohno, H. Kobayashi, F. Mitobe, T. Suzuki, K. Shudo, and M. Tanaka, Phys. Rev. B 77, 085319 (2008). [28] K. Biswas, N. Varghese, and C.N.R. Rao, Small 4, 649 (2008). [29] H. Zheng, R.K. Smith, Y. Jun, C. Kisielowski, U. Dahmen, and A.P. Alivisatos, Science 324, 1309 (2009). [30] B. Lim, H. Kobayashi, P. Camargo, L. Allard, J. Liu, and Y. Xia, Nano Res. 3, 180 (2010).
Collections