Publication:
Existence of two-solar-mass neutron star constrains gravitational constant G(N) at strong field

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2012-01-20
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Amer Physical Soc
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
In general relativity, there is a maximum mass allowed for neutron stars that, if exceeded, entails collapse into a black hole. Its precise value depends on details of the nuclear matter equation of state, a subject where much progress has been accomplished thanks to low energy effective theories. The discovery of a two-solar-mass neutron star, near that maximum mass, when analyzed with modern equations of state, implies that Newton's gravitational constant in the star cannot exceed its value on Earth by more than 12% at the 95% confidence level. This significantly extends the gravitational field intensity at which the constant has been constrained at the 10% level.
Description
©2012 American Physical Society. F.J.L.-E. thanks the Caja Madrid Program for Advanced Studies for a grant and the theory group at TU-Munich for its hospitality and support via the Exzellenzcluster Origin and Structure of the Universe. This work has been supported by Grants No. 227431-HadronPhysics2 (EU), No. Consolider-CSD2007-00042, No. AIC10-D-000582, No. FPA2008-00592, No. FIS2008-01323, No. FPA2010-17806, 11871/PI/09 (Fundación Séneca, Murcia), and No. UCM-BSCH GR58/08 910309 (Spain). We thank L. Tolos for sharing her computer data with us and A. Polls for suggestions.
Unesco subjects
Keywords
Citation
[1] G. Gillies, Metrologia 24, 1 (1987). [2] P. J. Mohr and B. N. Taylor, Rev.Mod.Phys. 77, 1 (2005). [3] M. Kramer, I. H. Stairs, R. Manchester, M. McLaugh-lin, A. Lyne, et al., Science 314, 97 (2006),arXiv:astro-ph/0609417 [astro-ph]. [4] P. B. Demorest et al., Nature 467, 1081 (2011). [5] D. J. Nice, E. M. Splaver, I. H. Stairs, O. Loehmer, A. Jessner, et al., Astrophys.J. 634, 1242 (2005), arXiv:astro-ph/0508050 [astro-ph]. [6] J. Lattimer and M. Prakash, Astrophys.J. 550, 426 (2001), arXiv:astro-ph/0002232 [astro-ph]. [7] R. C. Tolman, Phys.Rev. 55, 364 (1939). [8] J. Oppenheimer and G. Volkoff, Phys.Rev. 55, 374 (1939). [9] K. Hebeler, J. Lattimer, C. Pethick, and A. Schwenk, Phys.Rev.Lett. 105, 161102 (2010), arXiv:1007.1746 [nucl-th]. [10] Y. Zeldovich and I. Novikov, Stars and Relativity (Dover publications, 2011). [11] A. Lacour, J. A. Oller, and U.-G. Meissner, Annals Phys. 326, 241 (2011), arXiv:0906.2349 [nucl-th]. [12] J. A. Oller, A. Lacour, and U.-G. Meissner, J.Phys.G G37, 015106 (2010), arXiv:0902.1986 [nucl-th]. [13] A. Lacour, J. A. Oller, and U.-G. Meissner, J.Phys.G G37, 125002 (2010), arXiv:1007.2574 [nucl-th]. [14] U.-G. Meissner, J. A. Oller, and A.Wirzba, Annals Phys. 297, 27 (2002), arXiv:nucl-th/0109026 [nucl-th]. [15] A. Akmal, V. Pandharipande, and D. Ravenhall, Phys.Rev. C58, 1804 (1998), 5 arXiv:nucl-th/9804027 [nucl-th]. [16] An additional higher order computation of the sound velocity within the EFT [11] is planned since the excess over the casuality limit from the thermodynamical formula c2 s = @P/@ is only at the 10% level. This has no impact in our current results. [17] Since the pulsar’s period is measured to be about 3.15 milliseconds, the maximum centripetal acceleration a the Equator is two orders of magnitude smaller than gravity, and we therefore neglect the (naturally) very small oblateness of the star. [18] A. de la Cruz-Dombriz, A. Dobado, and A. Maroto, Phys.Rev.Lett. 103, 179001 (2009), arXiv:0910.1441 [astro-ph.CO]. [19] Introducing additional, possibly exotic, degrees of reedom cannot stiffen the equation of state beyond causality. [20] F. J. Llanes-Estrada and G. M. Navarro(2009), to be published in Jour. Astrophys. Space Sci., arXiv:0905.4837 [astro-ph.HE]. [21] A. V. T. B. Datta and D.Bhattacharya, Astrophys.Astr. 16, 375 (1995). [22] P. R. Chowdhury, PoS NICXI, 175 (2010), arXiv:1105.0080 [nucl-th]. [23] H. Li, X.-L. Luo, Y. Jiang, and H.-S. Zong, Phys.Rev. D83, 025012 (2011), arXiv:1101.1744 [hep-ph]. [24] D.-H. Wen, B.-A. Li, and L.-W. Chen(2011), arXiv:1101.1504 [astro-ph.SR]. [25] F. Ozel, G. Baym, and T. Guver, Phys.Rev. D82, 101301 (2010), arXiv:1002.3153 [astro-ph.HE]. [26] J. M. Lattimer and M. Prakash(2010),arXiv:1012.3208 [astro-ph.SR]. [27] H. Bethe and G. Brown, Astrophys.J. 445, L129 (1995). [28] K. Kainulainen, V. Reijonen, and D. Sunhede, Phys.Rev. D76, 043503 (2007), arXiv:gr-qc/0611132 [gr-qc].
Collections