Publication:
Comparative study of liquid uptake and permeation characteristics of sulfonated cation-exchange membranes in water and methanol

Research Projects
Organizational Units
Journal Issue
Abstract
Liquid permeation and uptake measurements of pure water and methanol were carried out using three commercial cation-exchange membranes: Nafion-117 (perfluorinated polyethylene with pendant ether-linked side chains terminated with sulfonated groups), MK-40 (microparticles of polystyrene-divinylbenzene with sulfonic groups randomly dispersed in a polyethylene matrix) and CR61-CZL-412 (crosslinked sulfonated copolymer of styrene-divinylbenzene). Methanol uptake by the Nafion-117 membrane was higher than that of water, in contrast, for MK-40 and CR61-CZL-412 membranes the opposite behavior is observed. Differences in the water and methanol liquid uptakes by the membranes were discussed in terms of the chemical interaction between the liquids and the polymers, and also on the size of the liquid molecules. On the other hand, the methanol permeation flow values through the membranes were higher than those of water for all the studied membranes.
Description
© 2008 Elsevier B.V. The authors of this study gratefully acknowledge Prof. C. Larchet and Prof. V. Nikonenko for donating MK40 membrane samples. Financial support from Comunidad de Madrid and Universidad Complutense de Madrid under Project CCG06-UCM/MAT-1037 is also gratefully acknowledged.
UCM subjects
Unesco subjects
Keywords
Citation
[1] P. Prakash, D. Hoskins, A.K. SenGupta, Application of homogeneous and heterogeneous cation-exchange membranes in coagulant recovery from water treatment plant residuals using Donnan membrane process, J. Membr. Sci. 237 (2004) 131. [2] C. Larchet, G. Eigenberger, A. Tshkay, K. Tastanov, V. Nikonenko, Application of electromembrane technology for providing drinking water for the population of the Aral region, Desalination 149 (2002) 383. [3] J.H.Wee, Applications of proton exchangemembrane fuel cell systems, Renew. Sustain. Energy Rev. 11 (2007) 1720. [4] M.Y. Kariduraganavar, R.K. Nagarale, A.A. Kittur, S.S. Kulkarni, Ion-exchange membranes: preparative methods for electrodialysis and fuel cell applications, Desalination 197 (2006) 225. [5] E. Volodina, N. Pismenskaya, V. Nikonenko, C. Larchet, G. Pourcelly, Ion transfer across ion-exchange membranes with homogeneous and heterogeneous surfaces, J. Colloid Interface Sci. 285 (2005) 247. [6] W.S. Winston Ho, K.K. Sirkar, Membrane Handbook, Van Nostrand Reinhold, New York, NY, 1992. [7] J.H. Choi, S.H. Kim, S.H. Moon, Heterogeneity of ion-exchange membranes: the effects ofmembrane heterogeneity on transport properties, J. Colloid Interface Sci. 241 (2001) 120. [8] P.W. Majsztrik, M.B. Satterfield, A.B. Bocarsly, J.B. Benziger, Water sorption, desorption and transport in Nafion membranes, J. Membr. Sci. 301 (2007) 93. [9] W. Kujawski, M. Staniszewski, T.Q. Nguyen, Transport parameters of alcohol vapors through ion-exchange membranes, Sep. Purif. Technol. 57 (2006) 476. [10] R.K.Nagarale, G.S. Gohil, V. Shahi, Recent developments on ion-exchangemembranes and electro-membrane processes, Adv. Colloid Interface Sci. 119 (2006) 97. [11] T. Xu, Ion exchange membranes: state of their development and perspective, J. Membr. Sci. 263 (2005) 1. [12] M.W. Verbrugge, R.F. Hill, Ion and solvent transport in ion-exchange membranes, J. Electrochem. Soc. 137 (1990) 886. [13] S. Koter, Transport of simple electrolyte solutions through ion-exchange membranes—the capillary model, J. Membr. Sci. 206 (2002) 201. [14] J. Palomo, P.N. Pintauro, Competitive adsorption of quaternary ammonium and alkali metal cations into a Nafion cation-exchange membrane, J. Membr. Sci. 215 (2003) 103. [15] L. Chaabane, L. Dammark, V.V. Nikonenko, G. Bulvestre, B. Auclair, The influence of absorbed methanol on the conductivity and on the microstructure of ionexchange membranes, J. Membr. Sci. 298 (2007) 126. [16] V.I. Zabolotsky, V.V. Nikonenko, Effect of structural membrane inhomogeneity on transport properties, J. Membr. Sci. 79 (1993) 181. [17] J.P.G. Villaluenga, V.M. Barragán, B. Seoane, C. Ruiz-Bauzá, Sorption and permeation of solutions of chloride salts, water and methanol in a Nafion membrane, Electrochim. Acta 51 (2006) 6297. [18] J.P.G. Villaluenga, B. Seoane, V.M. Barragán, C. Ruiz-Bauzá, Thermo-osmosis of mixtures of water and methanol through a Nafion membrane, J. Membr. Sci. 274 (2006) 116. [19] V.M. Barragán, C. Ruiz-Bauzá, J.P.G. Villaluenga, B. Seoane, Simultaneous electroosmotic and permeation flows through a Nafion membrane. 2. Methanol–water electrolyte solutions, J. Colloid Interface Sci. 288 (2005) 540. [20] K.A. Mauritz, R.B. Moore, State of understanding of Nafion, Chem. Rev. 104 (2004) 4535. [21] C. Heitner-Wirguin, Recent advances in perfluorinated ionomer membranes: structure, properties and applications, J. Membr. Sci. 120 (1996) 1. [22] J.P.G. Villaluenga, B. Seoane, V.M. Barragán, C. Ruiz-Bauzá, Permeation of electrolyte water–methanol solutions through a Nafion membrane, J. Colloid Interface Sci. 268 (2003) 476. [23] G. Suresh, Y.M. Scindia, A.K. Pandey, A. Goswami, Self-diffusion coefficient of water in Nafion-117 membrane with different monovalent counterions: a radiotracer study, J. Membr. Sci. 250 (2005) 39. [24] A. Goswami, A. Acharya, A.K. Pandey, Study of self-diffusion of monovalent and divalent cations in Nafion-117 ion-exchange membrane, J. Phys. Chem. B 105 (2001) 9196. [25] D. Nandan, H. Mohan, R.M. Iyer, Methanol and water uptake, densities, equivalental volumes and thicknesses of several uni- and divalent ionic perfluorosulphonate exchange membranes (Nafion-117) and their methanol–water fractionation behaviour at 298K, J. Membr. Sci. 71 (1992)69. [26] D. Rivin, C.E. Kendrick, P.W. Gibson, N.S. Schneider, Solubility and transport behavior of water and alcohols in NafionTM, Polymer 42 (2001) 623. [27] C.E. Evans, R.D. Noble, S. Nazeri-Thompson, B. Nazeri, C.A. Koval, Role of conditioning on water uptake and hydraulic permeability of Nafion® membranes, J. Membr. Sci. 279 (2006) 521. [28] E. Skou, P. Kauranen, J. Hentschel, Water and methanol uptake in proton conducting Nafion® membranes, Solid State Ionics 97 (1997) 333. [29] K. Kesore, F. Janowski, V.A. Shaposhnik, Highly effective electrodialysis for selective elimination of nitrates from drinking water, J. Membr. Sci. 127 (1997) 17. [30] C. Larchet, B. Auclair, V. Nikonenko, Approximate evaluation of water transport number in ion-exchange membranes, Electrochim. Acta 49 (2004) 1711. [31] A. Jonquières, L. Perrin, A. Durand, S. Arnold, P. Lochon, Modelling of vapour sorption in polar materials: comparison of Flory–Huggins and related models with the ENSIC mechanistic approach, J. Membr. Sci. 147 (1998) 59. [32] A. Jonquières, L. Perrin, S. Arnold, P. Lochon, Comparison of UNIQUAC with related models formodelling vapour sorption in polar materials, J. Membr. Sci. 150 (1998) 125. [33] T.D. Gierke, G.E. Munn, F.C. Wilson, The morphology in Nafion perfluorinated membrane products, as determined by wide- and small-angle X-ray studies, J. Polym. Sci., Polym. Phys. 19 (1981) 1687. [34] K.D. Kreuer, On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells, J. Membr. Sci. 185 (2001) 29. [35] P. Dimitrova, K.A. Friedrich, B. Vogt, U. Stimmimg, Transport properties of ionomer composite membranes for direct methanol fuel cells, J. Electroanal. Chem. 532 (2002) 75. [36] J.P.G. Villaluenga, M. Khayet, M.P. Godino, B. Seoane, J.I. Mengual, Pervaporation of toluene/alcohol mixtures through a coextruded linear low-density polyethylene membrane, Ind. Eng. Chem. Res. 42 (2003) 386. [37] V. Freger, E. Korin, J. Wisniak, E. Korngold, Preferential sorption in ion-exchange pervaporation membranes: sorption of water–ethanol mixture by sodium polyethylene sulphonate, J. Membr. Sci. 128 (1997) 151. [38] J. Schauer, L. Broˇzová, Heterogeneous ion-exchange membranes based on sulfonated poly(1,4-phenylene sulfide) and linear polyethylene: preparation, oxidation stability, methanol permeability and electrochemical properties, J. Membr. Sci. 250 (2005) 151. [39] S. Savari, S. Sachdeva,A.Kumar, Electrolysis of sodium chloride using composite poly(styrene-co-divinylbenzene) cation exchange membranes, J. Membr. Sci. 310 (2008) 246. [40] A. Lehmani, P. Turq, M. Perie, J. Perie, J.P. Simonin, Ion transport in Nafion®117 membrane, J. Electroanal. Chem. 428 (1997) 81. [41] K. Ramya, K.S. Dhathathreyan, Direct methanol fuel cells: determination of fuel crossover in a polymer electrolytemembrane, J. Electroanal. Chem. 542 (2003) 109. [42] S. Koter, Transport of single electrolyte solutions through ion-exchange membranes—the capillary model, J. Membr. Sci. 206 (2002) 201. [43] M. Eikerling, Yu.I. Kharkats, A.A. Kornyshev, Yu.M. Volfkovich, Phenomenological theory of electro-osmotic effect and water management in polymer electrolyte proton- conducting membranes, J. Electrochem. Soc. 145 (1998) 2684. [44] F. Meier, G. Eigenberger, Transport parameters for the modelling ofwater transport in ionomer membranes for PEM-fuel cells, Electrochim. Acta 49 (2004) 1731. [45] P. Costamagna, Transport phenomena in polymeric membrane fuel cells, Chem. Eng. Sci. 56 (2001) 323. [46] J. Ceynova, Pore model parameters of cation-exchange membranes, Angew. Makromol. Chem. 121 (1984) 97. [47] J. García-Alemán, J.M. Dickson, Mathematical modeling of nanofiltration membranes with mixed electrolyte solutions, J. Membr. Sci. 235 (2004) 1. [48] V.H. Shahi, G.S. Trivedi, S.K. Thampy, R. Rangarajan, Studies on the electrochemical and permeation haracteristics of asymmetric charged porous membranes, J. Colloid Interface Sci. 262 (2003) 566.
Collections