Publication:
Water and methanol transport in Nafion membranes with different cationic forms 1. Alkali monovalent cations

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2006-09-29
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Science BV
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The mass flux originated when two methanol-water solutions of different methanol concentration are separated by a Nation 117 membrane in acid (H+) and different alkali metal forms (Li+, Na+, K+, Rb+, Cs+) have been measured, as a function of the methanol concentration difference. From the experimental results, the methanol and water permeabilities have been estimated for the different forms of the membrane. The results show that the cationic form of the membrane strongly influences on the methanol and water permeabilities with respect to the values corresponding to its acid form. Moreover, this influence is different for water and methanol depending on the substituted cation. This strong influence of the cationic form of the membrane on the methanol and water permeabilities could be important in relation to the development of new membranes to decrease the methanol crossover in direct methanol fuel cells.
Description
© 2006 Elsevier B.V. Financial support from the University Complutense of Madrid under Project 052PR13273 is gratefully acknowledged.
UCM subjects
Unesco subjects
Keywords
Citation
[1] A. Heinzel, V.M. Barragán, J. Power Sources 84 (1999) 70–74. [2] J. Cruickshank, K. Scott, J. Power Sources 70 (1998) 40–47. [3] J. Zhang, Y. Wang, Fuel Cells 4 (2004) 1–2. [4] M. Shen, K. Scott, J. Power Sources 148 (2005) 24–31. [5] V.M. Barragán, A. Heinzel, J. Power Sources 104 (2002) 66–72. [6] J. Kallo, J. Kamera, W. Lehnert, R. Von Helmolt, J. Power Sources 127 (2004) 181–186. [7] V. Gogel, T. Frey, Z. Yonsgsheng, K.A. Friedrich, L. JÖrinsen, J. Garche, J. Power Sources 127 (2004) 172–180. [8] H.L.Tang, M. Pan, S.P. Jiang, R.Z.Yuan, Mater. Lett. 59 (2005) 3766–3770. [9] P. Dimitrova, K.A. Friedrich, U. Stimming, B. Vogt, Solid State Ionics 150 (2002) 115–122. [10] W.C. Choi, J.D. Kim, S.I. Woo, J. Power Sources 96 (2001) 411– 414. [11] H. Lin, T.L. Yu, L. Huang, L. Chen, K. Shen, G. Jung, J. Power Sources 150 (2005) 11–19. [12] V. Tricoli, J. Electrochem. Soc. 145 (1998) 3798–3801. [13] V.M. Barragán, C. Ruiz-Bauzá, J.P.G. Villaluenga, B. Seoane, J. Power Sources 130 (2004) 22–29. [14] G. Suresh, X.M. Scindia, A.K. Pandey, A. Goswami, J. Membr. Sci. 250 (2005) 39–45. [15] N.H. Jalani, R. Datta, J. Membr. Sci. 264 (2005) 167–175. [16] D. Nandan, H. Mohan, R.M. Iyer, J. Membr. Sci. 71 (1992) 69–80. [17] L.G. Lage, P.G. Delgado, Y. Kawano, Eur. Polym. J. 40 (2004) 1309–1316. [18] T. Okada, H. Satou, M. Okuno, M. Yuasa, J. Phys. Chem. B 106 (2002) 1267–1273. [19] A. Goswami, A. Acharya, A.K. Pandey, J. Phys. Chem. B 105 (2001) 9196–9201. [20] M. Legras, Y. Hirata, Q.T. Nguyen, D. Langevin, M.Métayer, Desalination 147 (2002) 351–357. [21] M. Kameche, C. Innocent, F. Xu, G. Pourcelly, Z. Derriche, Desalination 168 (2004) 319–327. [22] S. Koter, P. Piotrowski, J. Kerres, J. Membr. Sci. 153 (1999) 83–90. [23] J.P.G. Villaluenga, B. Seoane, V.M. Barragán, C. Ruiz-Bauzá, J. Membr. Sci. 274 (2006) 116–122. [24] J. D’Ans, H. Surawsky, C. Synowietz, Densities of liquid systems and their capacities, in: Numerical Data and Functional Relationships in Science and Technology. Group V. Macroscopic and Technical Properties of Matter, vol. 1, Springer, New York, 1977. [25] H.A. Every, M.A. Hickner, J.E. McGrath, T.A. Zawodzinski, J. Membr. Sci. 250 (2005) 183–188. [26] P.S. Kauranen, E. Skou, J. Appl. Electrochem. 26 (1996) 909–917.
Collections