Publication:
Thermo-osmosis of mixtures of water and methanol through a Nafion membrane

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2006-04-05
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Science BV
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Mass transport of mixtures of water and methanol through a Nation membrane as a function of the temperature difference between the two sides of the membrane was measured under different experimental conditions. The results show that the composition of the solutions, the temperature difference across the membrane, and the mean temperature in the membrane cell are governing factors in the thermo-osmotic transport process. In all cases studied, the thermo-osmotic flux through the membrane goes from the low temperature side to the high temperature side, and it increases linearly with the temperature difference. Moreover, the flux also increases with the mean temperature in the membrane cell. The thermo-osmotic coefficient of methanol in the membrane is higher than that of water. For water/methanol mixtures, the total flux through Nation membrane can be larger than the fluxes of pure solvents, and it increases with the methanol content for water/methanol mixtures.
Description
© 2005 Elsevier B.V. l support from Ministerio de Ciencia y Tecnología of Spain under Project BFM2000-0625 is gratefully acknowledged.
UCM subjects
Unesco subjects
Keywords
Citation
[1] M. Tasaka, M. Nagasawa, Nonisothermal membrane phenomena through charged membranes, J. Polym. Sci. 40 (1975) 31. [2] M. Tasaka, S. Abe, S. Sugiura, M. Nagasawa, Thermo-osmosis through charged membranes, Biophys. Chem. 6 (1977) 271. [3] M. Tasaka, Thermal membrane potential and thermo-osmosis across charged membranes, Pure Appl. Chem. 58 (1986) 1637. [4] M. Tasaka, H. Futamura, The effect of temperature on thermo-osmosis, J. Membr. Sci. 28 (1986) 183. [5] M. Tasaka, T. Mizuta, O. Sekiguchi, Mass transfer through polymer membranes due to a temperature gradient, J. Membr. Sci. 54 (1990) 191. [6] M. Tasaka, T. Hirai, R. Kiyono, T. Aki, Solvent transport across cationexchange membranes under a temperature difference and under an osmotic pressure difference, J. Membr. Sci. 71 (1992) 151. [7] M. Tasaka, T. Urata, R. Kiyono, T. Aki, Solvent transport across anionexchange membranes under a temperature difference and under an osmotic pressure difference, J. Membr. Sci. 67 (1992) 83. [8] K. Hanaoka, R. Kiyono, M. Tasaka, Thermal membrane potential across anion-exchange membranes in KCl and KIO3 solutions and the transported entropy of ions, J. Membr. Sci. 82 (1993) 255. [9] R.P. Rastogi, R.L. Blokhra, R.K. Agarwal, Cross-phenomenological coefficients. Part 1. Studies on thermo-osmosis, Trans. Faraday Soc. 60 (1964) 1386. [10] R.P. Rastogi, K. Singh, Cross-phenomenological coefficients. Part 5. Thermo-osmosis of liquids through cellophane membrane, Trans. Faraday Soc. 62 (1966) 1754. [11] H. Vink, S.A.A. Chishti, Thermal osmosis in liquids, J. Membr. Sci. 1 (1976) 149. [12] F. Bellucci, Temperature polarization effects in thermo-osmosis, J. Membr. Sci. 9 (1981) 285. [13] J.I. Mengual, F. García-López, C. Fernández-Pineda, Permeation and thermal osmosis of water through cellulose acetate membranes, J. Membr. Sci. 26 (1986) 211. [14] J.I. Mengual, F. García-López, Thermo-osmosis of water, methanol, and ethanol through cellulose acetate membranes, J. Colloid Interf. Sci. 125 (1988) 667. [15] T.V. Nguyen, R.E. White, A water and heat management model for proton exchange membrane fuel cells, J. Electrochem. Soc. 140 (8) (1993) 2178. [16] T.F. Fuller, J. Newman, Water and thermal management in solid polymer electrolyte fuel cells, J. Electrochem. Soc. 140 (5) (1993) 1218. [17] B.K.K. Kho, B. Bae, M.A. Scibioh, J. Lee, H.Y. Ha, On the consequences of methanol crossover in passive air-breathing direct methanol fuel cells, J. Power Sources 142 (2005) 50. [18] T. Berning, N. Djilali, Three-dimensional computational analysis of transport phenomena in a PEM fuel cell — a parametric study, J. Power Sources 124 (2003) 440. [19] V. Mishra, F. Yang, R. Pitchumani, Analysis and design of PEM fuel cells, J. Power Sources 141 (2005) 47. [20] V.M. Barragán, C. Ruiz-Bauzá, Effect of unstirred solution layers on the thermal membrane potential through cation-exchange membranes, J. Membr. Sci. 125 (1997) 219. [21] F. Bellucci, E. Drioli, F.S. Gaeta, D.G. Mita, N. Pagliuca, D. Tomadacis, Temperature gradient affecting mass transport in synthetic membranes, J. Membr. Sci. 7 (1980) 169. [22] M.S. Dariel, O. Kedem, Thermo-osmosis in semipermeable membranes, J. Phys. Chem. 79 (1971) 1773. [23] J.I. Mengual, J. Aguilar, C. Fernández-Pineda, Thermo-osmosis of water through cellulose acetate membranes, J. Membr. Sci. 4 (1978) 209. [24] N. Pagliuca, D.G. Mita, F.S. Gaeta, Isothermal and non-isothermal water transport in porous membranes. I. The power balance, J. Membr. Sci. 14 (1983) 31. [25] T. Suzuki, R. Kiyono, M. Tasaka, Solvent transport across anionexchange membranes under a temperature difference and transported entropy of water, J. Membr. Sci. 92 (1994) 85. [26] D. Rivin, C.E. Kendrick, P.W. Gibson, N.S. Schneider, Solubility and transport of water and alcohols in Nafion, Polymer 42 (2001) 623. [27] E. Skou, P. Kauranen, J. Hentschel, Water and methanol uptake in proton conducting Nafion membranes, Solid State Ionics 97 (1997) 333. [28] J.P.G. Villaluenga, B. Seoane, V.M. Barragán, C. Ruiz-Bauzá, Permeation of electrolyte water/methanol solutions through a Nafion membrane, J. Colloid. Interf. Sci. 268 (2003) 476. [29] D.R. Lide, CRC Handbook of Chemistry and Physics, 81st ed., CRCPress, Boca Raton, 2000. [30] S. Hietala, S.L. Maunu, F. Sundholm, Sorption and diffusion of methanol and water in PVDF-g-PSSA and Nafion 117 polymer electrolyte membranes, J. Polym. Sci. Polym. Phys. 28 (2000) 3277. [31] X. Ren, T.E. Springer, S. Gottesfeld, Water and methanol uptakes in Nafion membranes and membrane effects on direct methanol cell performance, J. Electrochem. Soc. 147 (2000) 92. [32] K. Ramya, K.S. Dhathathreyan, Direct methanol fuel cells: determination of fuel crossover in a polymer electrolyte membrane, J. Electroanal. Chem. 542 (2003) 109. [33] P. Dimitrova, K.A. Friedrich, B. Vogt, U. Stimming, Transport properties of ionomer composite membranes for direct methanol fuel cells, J. Electroanal. Chem. 532 (2002) 75. [34] C.A. Edmondson, P.E. Stallworth, M.C. Wintersgill, J.J. Fontanella, Y. Dai, S.G. Greenbaum, Electrical conductivity and NMR studies of methanol/water mixtures in Nafion membranes, Electrochim. Acta 43 (1998) 1295.
Collections