Publication:
Simultaneous electroosmotic and permeation flows through a Nafion membrane - 1. Aqueous electrolyte solutions

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2004-09-01
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Academic Press Inc Elsevier Science
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The volume flow through a Nafion membrane originated by the simultaneous action of an electric potential difference and a pressure difference has been measured using aqueous KCl solutions under different experimental conditions. The behavior has been analyzed when both gradients act in the same and in the opposite sense. The results indicate that the simultaneous action of the pressure and potential differences originates a total flow different from the sum of the electroosmotic and permeation flows due to each force acting separately. The application of irreversible thermodynamics, which includes second-order terms, allowed the determination of the phenomenological coefficients. Moreover, from these values, the equivalent pore radius was estimated on the assumption that the membrane is a porous medium filled with an internal solution.
Description
© 2004 Elsevier. Financial support from the Ministerio de Ciencia y Tecnología of Spain under Project BFM2000-0625 is gratefully acknowledged.
UCM subjects
Unesco subjects
Keywords
Citation
[1] S.R. De Groot, Thermodynamics of Irreversible Processes, fourth ed., North-Holland, Amsterdam, 1966. [2] R.C. Srivastava, P.K. Avasthi, Kolloid Z. Z. Polym. 250 (1972) 253. [3] R.P. Rastogi, R.C. Srivastava, P. Chand, J. Colloid Interface Sci. 263 (2003) 223. [4] V.K. Shahi, G.S. Trivedi, S.K. Thampy, R. Rangarajan, J. Colloid Interface Sci. 262 (2003) 566. [5] S. Koter, J. Membrane Sci. 166 (2000) 127. [6] K.Y.Wei, H.J. Keh, Colloids Surf. A Physicochem. Eng. Aspects. 222 (2003) 301. [7] S. Koter, J. Membr. Sci. 206 (2002) 201. [8] A. Heinzel, V.M. Barragán, J. Power Sources 84 (1999) 70. [9] J.P. García-Villaluenga, B. Seoane, V.M. Barragán, C. Ruiz-Bauzá, J. Colloid Interface Sci. 263 (2003) 217. [10] J.P.G. Villaluenga, B. Seoane, V.M. Barragán, C. Ruiz-Bauzá, J. Colloid Interface Sci. 268 (2003) 476. [11] V.M. Barragán, C. Ruiz-Bauzá, J.P.G. Villaluenga, B. Seoane, J. Membr. Sci. 236 (2004) 109. [12] G.J. Janz, in: D.J.G. Ives, G.J. Janz (Eds.), Reference Electrodes, Academic Press, London, 1961, pp. 179–230. [13] V.M. Barragán, C. Ruiz-Bauzá, J. Colloid Interface Sci. 240 (2001) 182. [14] N. Laksminarayanaiah, Transport Phenomena in Membranes, Academic Press, New York, 1969. [15] R.P. Rastogi, R.C. Srivastava, S.N. Singh, Chem. Rev. 93 (1993) 1945. [16] A. Narebska, W. Kujawski, S. Koter, J. Membr. Sci. 30 (1987) 125. [17] J. Cruickshank, K. Scott, J. Power Sources 70 (1998) 40.
Collections