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Abstract

In this paper we want present some problems related to the
study of the topology of the complement of an algebraic curve
in the complex projective plane P2. We present the relations be-
tween the study of such topology with surface singularities. We
also present the classic tool to calculate the fundamental group
of the complement to a plane curve: the braid monodromy. Be-
sides the classical generic procedure, we present the asymptotic
procedure, which makes the computation of the group more effec-
tive. Finally, we study the characteristic varieties, introduced by
Libgober. They result in new, powerful and effective invariants of
such a group.



The framework of this paper is the study of topological invariants of

the pair (P?,C) where C is a reduced algebraic curve (possibly singular)
and P? denotes the complex projective plane. For instance the first ho-
mology group of the complement P? \ C only depends on two algebraic
invariants: the number of irreducible components of C and their de-
grees. The other non-trivial homology group (note that Hy(P?\C) = Z)
is Ho(P? \ C) and it depends on local topological invariants of the sin-
gularities of C. Nevertheless, in the early 30’s, Zariski showed an exam-
ple of two irreducible curves of degree six with the same local topo-
logical invariants (six cusps each) but defining non-equivalent pairs.
Zariski proved that their complements were not homeomorphic by show-
ing that the fundamental groups of their complements were not isomor-
phic. Both sextics could be distinguished by the position of their singu-
larities. Namely, one of them had their cusps lying on a conic, whereas
the other one not. This second type of invariant, the fundamental group
of the complement has been widely studied in the literature. Techniques
for computing a finite presentation of this group were first carried out
by Zariski [27] and van Kampen [14].
In a general setting one can be interested in studying fundamental groups
of the complement of a complex quasi-projective subvariety W in P",
(i.e. W might not be closed). Let W be its closure. Then the following
equalities hold, see e.g. [10] Proposition 4.1.1:

Proposition 0.1 1. m(P"\ W) =0 if dimW <n — 1,
2. m (PP \ W) =m(P"\ W) if dimW =n — 1.

This means that it is enough to study fundamental groups m; (P" \ W)
of complements of hypersurfaces in the projective space.

One can go further and apply the following basic result which restricts
our attention to the case of plane curves, see e.g. [7]:

Theorem 0.2 Zariski Theorem of Lefschetz type. Let V be a
hypersurface in P". For almost every 2-plane E C P" the following map

m(E\(ENV)) = m((P"\V)

induced by the inclusion is an isomorphism.



Therefore the fundamental group of the complement of a complex al-
gebraic projective curve C = ENV in E = P? is the most interesting
case. The main tool to study this group is by means of braid theory (cf.
section 2). Besides the classical Zariski-van Kampen method we present
the asymptotic case, which makes the computation of the fundamental
group more effective. Nevertheless, the practical complexity of using
finitely presented groups makes this invariant difficult to work with.

A class of invariants of the complement of C in P? could be the action of
certain monodromies related to the curve C. The simplest invariant of
amap h : X — X of a topological space into itself is the zeta-function.
In section 1, we show that in our case the zeta-function is as bad as the
Euler characteristic of the complement.

In section 4, we present some finer invariants, namely, the characteristic
varieties of C and its Alexander polynomial. These algebraic invariants
were introduced by Libgober [16]. It was originally used to obtain infor-
mation about all abelian covers of P? ramified along C. They consist of
a finite number of translated tori in (C*)”* where by the first Betti num-
ber of P2\ C. They are invariants of the fundamental group and hence
topological invariants of the pair (P2,C). The advantage in their study
is that they are simpler to compute than the fundamental group but still
fine enough to be sensitive to the position of the curve singularities.

1 General Invariants

Let us start with a general situation. Assume the hypersurface V is
given in P" as the zero locus of a degree d homogeneous polynomial f €
Clzg,z1,...,%,). We can assume that d > 1 otherwise the complement
is the n-dimensional affine space which is simply connected.

Since d > 1 the cone of the hypersurface V' in the n+1-dimensional affine
space has the origin as a singular point. Let (f,0) : (C**1,0) — (C,0)
be the germ at the origin of the corresponding holomorphic function.
The Milnor Fibration Theorem states that (f,0) defines a C'*°-locally
trivial fibration in a small neighborhood of the origin, any of its fibers
is called the Milnor fiber V; = {z € C""! : f(z) = ¢, ||z < 6},
(0 < |e] < 6, 0 small enough) of the singularity f at 0 € C**!, see
Milnor’s book, [21].

Since f is a homogeneous polynomial, then the local Milnor fibration



defined above is equivalent to the fibration f : {z € C**! : ||f(2)| =
1} — S%; we choose F := f (1) as Milnor fiber.

The projection m: FF — P"\ V : (20, Z1,...,Zn) — [To 1 X1 ... Tp] 18
well defined because V := f~1(0). The map 7 is a local homeomorphism
(F' is a smooth manifold). The fiber of 7 at any point P € P"\V consists
of d different points.

All the above conditions together imply (F,7) is an unramified cyclic
covering of degree d of P™ \ V, and the monodromy h : F' — F acting
as h(zo,...,zn) = ((axo,--.,C4Tn), where (g := exp(27i/d), coincides
with the generator of the group Auty (F) = Z/(d)Z, where U :=P"\ V.
Let y; € F be a base point and yo = m(y;1) € P" \ V, one has the short
exact sequence

1— 7T1(F,y1) — 7T1(Pn \ V,yg) — Z/(d)Z—) 1.

Milnor also proved for n > 2 that if (V,0) C (C**!,0) has an isolated
singularity the Milnor fiber F' is simply connected. It turns out that if
the projective hypersurface V' C P" is nonsingular, the Milnor fiber ¥
is simply connected and 71 (P" \ V,yp) is cyclic of order d.

Example 1.1 If C is a nonsingular conic in P2, its corresponding fun-
damental group 71 (P?\ C) is Z/(2)Z.

If C is the union of two different lines C = LU Ly the complement P?\ C
is C x C* whose fundamental group is Z.

Some invariants of the local Milnor fibration (f,0) : (C*,0) — (C,0),
where f is a homogeneous polynomial, are related to the fundamental
group of the complement in the projective plane of the projective curve
C = {f = 0}. One of these invariants is the zeta function of the Milnor
fibration. A second invariant, which is finer, is the Alexander polynomial
of the Milnor fibration.

Definition 1.2 Let h : X — X be a map from a topological space X
(say, with finite dimensional homology) into itself. The zeta-function
Cn(t) of h is the rational function defined by

Ch(t) == H{det [id — th*|Hq(X;(C)]}(_1)q,

q>0



In the local Milnor fibration case the zeta-function of the germ of holo-
morphic function (f,0) is the zeta-function (y(t) associated to the ge-
ometric monodromy corresponding to a small loop around the singular
value 0. The Alexander polynomial of the germ of holomorphic function
(f,0) is

Af(t) = det [id — th*|Hn(F;(C)]-

When f is homogeneous, the local Milnor fibration defined above is
also equivalent to the global affine Milnor fibration defined by the
polynomial function f : C**! — C.

Let P : C"™' — C be any polynomial map. It is well known that
there exists a finite set B(P) C C such that the polynomial function P
is a C* locally trivial fibration over its complement. The monodromy
transformation h of this fibration corresponding to the loop zg-exp(27iT)
(0 <7 < 1) with ||29]| big enough is called the geometric monodromy
at infinity of the polynomial P. Let h, be its action in the homology
groups of the fiber (the level set) {P = ¢p}. The zeta-function of the
monodromy at infinity of the polynomial P is the rational function

Cl%o(t) - H{det [Zd B th*|Hq({P:t0}§C)]}(71)qa
q20

and the Alexander polynomial at infinity is
AP (t) = det [id — t hi|u, ({P=to}:0)]-

If f is homogenous, it turns out that (f(t) = (3°() and Af(t) = AP(2).
Any polynomial function P : C"*! — C defines also a meromorphic
function P on the projective space P*+1. At each point z of the infinite
hyperplane P? the germ of the meromorphic function (P,z) has the
F(U,IIJI,...,IEn)
ud
P2 = {u = 0}, (F,z) is the germ of a holomorphic function, and d is
the degree of the polynomial P.

In [12], for a meromorphic germ (f = 5,0) : (C™10) — P!, there

form

where u, x1, ..., x, are local coordinates such that

were defined the infinite Milnor fiber, the infinite monodromy transfor-
mation and thus the infinite zeta-function (7°(t). Let (. (¢) be the
corresponding zeta-function of the germ of the meromorphic function P
at the point = € P.



For the aim of convenience, in [12] we considered only meromorphic
germs (f = 5,0) with P(0) = @Q(0) = 0. At a generic point of the

infinite hyperplane P the meromorphic function P has the form u—ld.

For a germ of the form (f = 6,0) with @(0) = 0, it is reasonable to
give the following definition: its infinite Milnor fiber coincides with the
(usual) Milnor fiber of the holomorphic germ (@, 0); thus (°(t) = (o(?).
According to this definition, for the germ (uid, 0) its infinite zeta-function
is equal to (1 — t%).

Let S = {E} be a stratification of the infinite hyperplane P (that is a
partitioning of P7 into semi-analytic subspaces without any regularity
conditions) such that, for each stratum = of S, the infinite zeta-function
ng?x(t) does not depend on z, for z € =. Let us denote this zeta-function

by ¢(2°().

Theorem 1.3 [13]
¢r(t) = [T @M,

Zes

where x (o) denotes the Euler-Poincaré characteristic.

In particular, in our case f € C[xg,z1,z2] is reduced (it has no multiple
factors) and the formula above can be simplified. Let Sing(C) € P? con-
sist of s points Q1,...,Qs. One has the following natural stratification
of the infinite hyperplane P2 :

1. the 2-dimensional stratum 22 = P2 \ {C};

2. the I1-dimensional stratum Z!' = {C} \ {Q1, ..., Qs};

3. the O-dimensional strata 20 (i = 1,...,s), each consisting of one
point Q;.
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The Euler characteristic of the stratum =< is equal to

X(P%) = x(C) = 3 = x(2,d) + (1) Y i,
=1

where x(2,d) =3+ (l_df_l is the Euler characteristic of a non-singular

curve of degree d in the complex projective space P2, ; is the Milnor




number of the germ of the hypersurface C C P% at the point @Q;. At
each point of the stratum =2, the germ of the meromorphic function f
has (in some local coordinates u,y;,y2) the form u—ld (P2, = {u = 0})
and its infinity zeta-function (3 (¢) is equal to (1 — ¢%).

At each point of the stratum =', the germ of the polynomial f has (in
some local coordinates u,y1,y2) the form %. Its infinity zeta-function
(21 (t) is equal to 1 and thus it does not contribute a factor to the zeta-
function of the polynomial f.

At a point Q; (i = 1,...,s), the germ of the meromorphic function f

has the form ¢(u,y1,y2) = W, where g; is a local equation of the
curve C C P2 at the point Q;.

To compute the infinite zeta-function (°(f) of the meromorphic germ
(¢,0), let us consider the embedded resolution 7 : (X, D) — (C?,0) of
the curve singularity g;, i.e., a proper modification of (C?,0) which is
an isomorphism outside the origin in C?> and such that, at each point
of the exceptional divisor D, the lifting g; o m of the function g; to the
space X of the modification has (in some local coordinates) the form
yi"ys ” (mi > 0).

Let us consider the modification 7 = id x 7 : (C, x X,0 x D) —
(C3,0) = (C, xC2,0) of the space (C3,0) — the trivial extension: (u,z) —
(u,m(z)). Let ¢ = ¢ om be the lifting of the meromorphic function ¢
to the space C, x &' of the modification 7. Let MZ = 7 HMP) (MY
is the infinite Milnor fiber of the germ (¢, 0)) be the local level set of
the meromorphic function ¢ (close to the infinite one). In the natu-
ral way one has the (infinite) monodromy hZ’ acting on M3 and its
zeta-function C%o(t).

Theorem 1.4 [13]
(1) = ¢ (1).

For m = (m1, me) with integer my > mo > 0, let Sy, be the set of points
of the exceptional divisor D of the resolution 7 at which the lifting of
the germ g; has the form yi"' - y5"*; for m > 1, let Sy, be Sy, 0)-

At a point z € {0} x Sy C {0} x D, the lifting ¢ = ¢ o 7 of the

ym1 . ymz
%. Thus, for fixed m, the infinite
U

zeta-function (3° () of the germ of the meromorphic function ¢ at a

function ¢ has the local form



point z from {0} x Sy is one and the same. It can be determined by
the Varchenko type formula from [12]. In any case (7, (¢) = 1.
According to Theorem 1.3 (3°(¢) = 1 and by Theorem 1.4 (2°(t) = 1.
It turns out that for any homogeneous polynomial f, its zeta-function
at infinity is equal to
Cr(t) = (1= M=,

—2y _ 1—(1—-a)® s . .
where x(2%) = T + > i1 1(g:) and g; is a local equation of the
curve C = {f = 0} C P? at its singular point Q;.
In particular it implies that the zeta-function only depends on the topo-
logical type of the singularities of C C P2
Nevertheless, it is known that the Alexander polynomial of f is a finer
invariant, in fact it is related with the Alexander polynomial of the curve
C C P2
A common way to deal with the complement P2\C is passage to the affine
case. Let Lo, C P2 be a line and denote C? = P? \ Lo and Cpf = C\ L.
Then C?\C,; — P?\C induces a surjection 71 (P2\ (CUL ) )——m1 (P2\C),
a well-understood map (at least for Lo, transverse to C cf. section 2).
A. Libgober [15] defined the Alexander polynomial A(C,y)(t) of Cyy as
the characteristic polynomial of the endomorphism of the first homology
group of the infinite cyclic cover of C? \ Cos induced by deck transfor-
mations, see also section 4.

Definition 1.5 The Alexzander polynomial A(C)(t) of a projective curve
C C P? is the Alezander polynomial of an affine curve Coy C C?, where
Ly is a generic line.

Theorem 1.6 [24] If C C P? is a reduced curve defined by a homoge-
neous polynomial f then A(C)(t) is equal to Af(t).

The computation of Ay(t) using resolution of singularities has been
done by several authors, see Esnault [11], Loeser-Vaquie [19] and Artal-
Bartolo [1].

Nevertheless, in section 4 new invariants will be defined, the characteris-
tic varieties, which are more sensitive to the topology of the complement.
A plane curve C in P? defined by a degree d homogeneous polynomial
{fa(z,y,z) = 0} appears also as a tangent cone of a germ of surface



singularity (V,0) C (C3,0) defined by a holomorphic germ f = fq +
Ja1 + -

If the surface singularity (V,0) C (C?3,0) is isolated, some topological in-
variants of (V,0) C (C3,0) are related to the curve C. A typical example
of this situation is the class of superisolated singularities introduced by
Luengo in [20]. He proved that the link of a superisolated singularities
only deends on the combinatorial type of C. This was used by Artal in
[2] (see also [3]) to give a counterexample to the following conjecture by
Yau.

Conjecture 1.7 The topological type of a surface singularity (V,0) C
(C3,0) is determined by its link and its characteristic polynomial.



2 Zariski-van Kampen Theorem

In this section we will describe the so called Zariski-van Kampen method
to calculate a presentation of the fundamental group of the complement
to an plane algebraic curve. The first description was given by van
Kampen in [14]. In fact, to prove this Theorem he uses the famous
Seifert-van Kampen Theorem for the first time. Other descriptions of
this method can be found in [27], [7], [10].

Let C be an algebraic curve in P2. Let P be a point not in C and Ly,
a line containing P such that L., intersects C transversally.

Let us choose a suitable coordinate system so that P = [0: 1 : 0] and
Loo = {Z = 0}. We will write the affine complex plane C? = P?\ L., with
coordinates (z = X/Z,y = Y/Z) and denote the affine curve C N C? by
Car. When no ambiguity seems likely to arise we will refer to C,y simply
by C. The following well-known result shows the relative importance of
the particular choice of the line at infinity.

Lemma 2.1 For a given projective plane curve C, the topology of the
pair (C?,C) does not depend on the choice of the line at infinity Lo as
long as Lo intersects C transversally. Therefore neither does m (C?\C).

Let us choose f(z,y) an equation for C. Let us consider p : C? — C
the projection on the first coordinate. Let A be the set of critical values
of plc, that is, A := {z € C|Discrimy (f) =0} = {z1,29,..., 21}

Lemma 2.2 The restriction map p| : C2\ (CUp~1(A)) = C\ A isa
locally trivial fibration.

Let us consider a disk F' C C so that A C F and another disk E so
that CN(F x C) C F x E (note that the existence of F is a consequence
of the condition P ¢ C).

Let us fix a base point * := (*1,*3) for the space C2 \ (CUp~(A))
such that %; € 9F and %3 € OF. For the sake of simplicity we will refer
to *1,%9 and (¥1,%*2) simply by * if no ambiguity seems likely to arise.

Let us denote by L. := {z = ¢} the fibers of p and by Y, := L. NC
the intersection of L. with C. Using the exact sequence of homotopy for
the generic fiber L, \ Y, of p| one has the following
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Lemma 2.3 Under the previous conditions
1— 71'1(L*\Y;, *) ﬁ) Wl(CZ\(CULlLJLQU. . .ULk), *) &) WI(C\A, *) —1
s an exact sequence of groups.

Note that 71 (L, \ Y, *) and 71(C \ A, %) are both free groups gen-
erated by {v1,72,...,7} and {11, 72,..., 7%} respectively. The closed
paths v; and 7; can be chosen to be a good system of generators in the
sense of [22] which basically corresponds to the following picture

Figure 1.

Note that v, - yp-1-... 71 and 7% - Tg—1 - ... - 71 are homotopic to
the boundary of the disks F and F respectively.

Proposition 2.4 Under the previous notations there is a finite presen-
tation of m (C?\ (CUL; ULy U...ULyg),*) as follows

<71,725 -5 Ty %17 %27 v 77:/€|7:i_1 "5 T = BZ(’Y]) >, (1)
where 7; are liftings of ; by p| and B;(y;) are words in the v;’s.

Remark 2.5 Determination of 3;(vy;) and election of 7;

Since p| is a locally trivial fibration its monodromy associates to each
7; @ homeomorphism h,, of the generic fiber L, \ Y.. One can choose
such homeomorphisms so that they are the identity outside E. If we
choose T so that it lies on the line {y = «}, then the induced map on
71 (Ly \ Ya, %) coincides with the (;’s given in (1). In this case, note that
hr, can be regarded as a braid in E with the set of strings Y. (see [6]).
By means of the geometric representation of such a braid one can easily
find an expression for B;(v;) as a word in yi,...,v, (See figure 6).

Note that for different choices of T; one obtains different B;’s. From
now on we will consider the lifting of 7; as in the previous paragraph.
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Definition 2.6 Let C be an algebraic curve on a complexr manifold X.
Let + ¢ C be the base point and p a smooth point of C. Let us consider
an analytic disk D intersecting C transversally at {p} = DNC. Let « be
a path joining * and a point of dD. A closed path in w1 (X \ C,*) of the
form adDa~" (with OD positively oriented) will be called meridian of C
n X.

Note that 7; as defined before is a meridian of L, in C?\ C.

Proposition 2.7 Let C be an irreducible curve in a complex manifold
X. Any two meridians of C in X are conjugate in w1 (X \ C,*).

The following is a well-known result.

Proposition 2.8 Let C and X be as above, and let m be any meridian
of C in X, then m(X,*) = m (X \C,%)/ <m >.

This implies 71 (C? \ (CU L1 ULy U...ULg), %)/ < F1,..oyTp >=
71 (C? \ C, %) and the following result follows

Proposition 2.9 The fundamental group of the complement of C in C?
is a finitely presented group given by

7-‘—1(@2 \Ca*) =< Y1572y - - - 37n|7] = /BZ(’YJ) >

In the following we want to give a description of m1(P? \ C,*). In
order to do so we will use the following relationship 71 (P2\CU Lo, *) =
71 (C2\C, *). By proposition 2.8, it will be enough to calculate a meridian
of the line at infinity Lo,. This is given in the following

Proposition 2.10 The closed path (y, - ... Y2 -71) ' is a meridian of
the line at infinity Lo

Proof. Let us consider the point P = [0 : 1 : 0] and the affine
coordinate system (r = X/Y,z = Z/Y) in P2\ {Y = 0}. Since P ¢ C
one can find two disks Fy, and F in such a way that the polydisk
F X EsoNC centered in P has an empty intersection with C. Consider
now the extension of the projection p, defined in Section 1, to the line
at infinity Lo,. The restriction of such an extension to the boundary of

12



the polydisk p : O(Fs X Es) — P! is a fibration on P! with fiber S and
Euler number —1.

Recall the disks E' and F' defined in section 1. It is not difficult to
see that one can choose F, F, Fo, Fo, so that

1. OF X OF = 0F 4 X 0F .

2. F x OF = Fy, X 0Fy where OF, has the reversed orientation.

bad

O(Foo X Eoo) \ p~HF) = 0F % x B
4. p(0Fy X Ex) =P\ F and 0F, x {cte.} are fibers of p.

SFooxEm

F X 8E=Foo X 8Eqq

Figure 2.

Therefore, one can trivialize p over P!\ F using 0Fs, X Es — P\ F.
The lifting of 9F !, say 7o, is a meridian of the line Ly,. On the other

hand, OF is homotopic to 7, - ... 7o - 71. Also note that the trivialization
of p over F given by F x aE = p Y(F) allows to lift 7, - ... 7o - 71 as
Tn - ...To - T1. Hence, the difference between both liftings (consadered in

one tr1v1ahzat10n) is the path OE_! = OF, that is, the (oriented) fiber
to the power the Euler number of p (—1 in our case).

Thus (7 ... 72 71) ' =Too - (Yn - .. 72 -71), and since 7; = 1 the
result follows. O

Remark 2.11 The proof of proposition 2.10 might seem a little artifi-
cial, and it certainly can be simplified. The reason why we choose this
method is by analogy to a more general case considered in the next sec-
tion.
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As a consequence, one has the following classical result.

Theorem 2.12 The fundamental group of the complement of C in P?
is a finitely presented group given by

T (P2\ C, %) =

=<2Vl = Bi(Vi) sV 2= 1>

3 Zariski-Van-Kampen Theorem with Vertical
Asymptotes.

We recall that if the point of projection P is not in C, then

T (C2\CU (L ULy U...ULy), %) =

~ o~ ~ | ~—1 ~
=< Y1725 Yy T1, T2, - - 7TI€|Ti YT = BZ(’Y]) >
Since 71, 7o, ..., T were chosen to be meridians of Ly, Ls, ..., L one
has

7-‘—1(@2 \Ca *) =< Y1s7Y2y - 37n|7] = /BZ(’YJ) >
Note that ~y, - ... 72 - 71 is the inverse of a meridian of the line at
infinity. Hence:

TP\ C,%) =< v1,72 - YulV = Bi(¥j)sVn - V2 1 =1>

In many instances it might seem more natural (or easier in order
to calculate 3;(v;)) to project from a point P on the curve C. The
construction above is no longer true since the 7; described above are not
meridians of the lines L;. It is nevertheless possible to give a method to
calculate the fundamental group from such a projection.

For the sake of simplicity, we will assume that L., does not belong
to the tangent cone of C at P.

There are two types of special vertical lines:

i) Those not belonging to the tangent cone of C at P and intersecting
Cqf non-transversally. We will denote them by Lq,..., L, corre-
sponding to fibers at the points {z1,...,zy}.

14



ii) Those belonging to the tangent cone of C at P. They will be
denoted by Ly,41,..., L, the fibers at the points {zm41,...,Zk}-

In this case the disks ' and £ do not exist anymore. However, one
can find Dy,,i = m +1,...,k pairwise disjoint disks centered on z;, F'
and F such that CN ((F\ U, D;) xC) C (F\UY D;)xE.

One thing is still true, though: for any point % in OF x OF and 7;
liftings in (F \ U%_,,, | Dy,) x {x} one has

7r1((C2 \CU(L1 ULy U. .. ULk),*) =

=< YLy Y29y Yy TLy T2 e - ,7~']C|7~'Z-71 Y5t T = ,Bi(’}/j) > .
The difference with the generic case is that, for ¢ = 1,...,m, the closed
path 7; is no longer a meridian of L;. Our purpose now is to calculate
meridians of L;, 1 = 1,...,m, see figure 4.
Example 3.1 Let C be the curve of equation (Z?>+Y X)(Z2—-YX)Y =
0. The equation of C in C?> = P2\ {z = 0} with coordinates v = X/Z,y =
Y/Z is (1 +yx)(1 —yx)y = 0. Projecting from [0 : 1: 0] the only special
fiber is L := {x = 0}. Let x = (1,2) be the base point. In figure 3 are
considered the generators 7y1,72,vs on the generic line {x = 1}.

13
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Figure 3.

Note that

7"—1(@2 \C UL,*) =< 71372&’733%“:71 “Yic T = /8(72) >

As in figure 4, let us consider a disk bounded by T (we can think of
it as placed on the line y = 2). Inside such disk let us take a meridian
of L, say 7" and two meridians of C, say a and b.

T

a a a ’

Figure 4.
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Note that a-b-7 = 7. Applying Lemma 2.8 to the meridian 7', one
has

7T1((CQ \Cv*) =< 717727’)/37%|%_1 it T = ﬁ(')’z),% =a-b>. (2)

One can easily calculate B(7;),a and b by means of the generators
Y1,7v2 and 7y3 as (see figure 6):

Blvi) = (y3-72 1)~ v (y3- 92 m)
a =y
b=(v2-m) (2 m)
Therefore, the last relation in (2) becomes T = v, - y3 -2 - N

Note that the information needed to calculate a and b in the example
reminds to that used to calculate 3(vy;). In particular, a is y; and b can
be written as « -7} - !, where « represents “half way” of 7! and '

is the closed path in x = —1 shown in figure 5.
Figure 5.
In general, one can see that, for + = m + 1,...,k, the following
relation holds 7; = 7/ - w;(y1,...,vn) = 7 - w;, where 7/ is a meridian of

L;. For the sake of simplicity we will consider w; = 1 for ¢ = 1,...,m.
Therefore, one obtains the following

’/TI(C\Ca*) =< V1,725 a’yna%la%Za"' a%k|%;1’y]%l = /8(7])37—1 =w; >

=< 71372?"'a’yn|wi_1 Y Wi :5(7]) >

Using the fact that L is not tangent to C at P, one has the analogue
to the generic case, that is, (71 ... 7t) ' = oo * (Y * --- - 71)- In this
case, 7; is not always trivial in 71 (P2 \ C, *), but 7 = w;. Thus,

T (P*\ C, %) =
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=< V1,720 Yol wy Dyiwi = B(yy), (wrwae. . cwg) T = (Y o) >

In this last part of the section we will describe how to calculate
the paths w; as words of ~i,...,7,. For simplicity purposes, we will
assume that the base point * is sufficiently close to L;, that is x € dD,,.
Hence there exists a disk D with the properties C N (D, x D) = () and
L;NC C {z;} x D. In other words, all branches tangent to L; at infinity
intersect Dy; x C outside D, x D.

We can also choose E (D C FE) such that CN (Dy, xC) C Dy, x E
and * € OE. We will denote 7;, that is 0D,, x {*}, by 7.

Let d be a loop in L, based on # of the form a-9D - o', with « any
path in L, \ C joining % with an arbitrary point of D. The loop d can
be written as a word in 7yy,...,v,. In the previous example, the loop d
is ’)/3_1 - Y9 - 7y3, see figure 6.

Case 1: d is not trivial, that is, not all the branches of C along
Ly, € P? are tangent to L,, at infinity.

It is not difficult to calculate a word w (= w(v1,...,7n)) such that
7#71.d-7 = @-d-w~'. Such word can be computed from 3;(d) analogously
to how we proceeded with f;(7;). The following equalities take place in
G = m (0D, x E\ C,*) and, hence are also true in 7 (C2 \ C, *).

Let m be the meridian of L; based on «(1) corresponding to 0D, x
{a(1)} and let « be as above. The following closed path 7 = a-m -a~!
satisfies 7/ -d -7 = d.

The next step will be to determine w from 7 = 7' - w as a function

of d and w, which are already known.

. - - - - ~—1 - - -
Since 7 '-d-7 = w-d-w ', 7 -d-7 =d, thenw-d-w ' =w-d-w '

One has the following
Lemma 3.2 Under the conditions above w = w - d* for an integer k.

Proof. The result is a consequence of the following facts:

1. There is an exact sequence

1 =<7y, y T > G < 17> 1.

2. The commutator of an element ¢ in a free group is the subgroup
generated by the word b so that b" = @ and r maximal. O
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To calculate £ it is enough to note that, in 71 (0Dy, x E\ (C N (Dy; x
D)), ), the loops 7 and 7' are homotopic. Moreover, m (9D, x E \
(CN(Dg; x D)), *) is the quotient of w; (0D, x E'\ C, ) by the normal
subgroup generated by those 7; around the points Y, outside D. We
will denote by [o] the class of o in this quotient. Note that if o can
be written as a word in 7,...,7,, then [o] can be obtained simply
substituting ; by either [y;], in case -y; surrounds a point inside D,
or 1 in case ; surrounds a points outside D. Hence, the expression
7 = 7.4 - d* considered in the quotient, becomes 1 = [@][d]¥. Therefore
both [@] = [d]~* and k are perfectly determined.

Case 2: d is the trivial word. One can add the line y = 0 to the
original curve and apply the previous case, where d is the non-trivial
Yna1. After computing the word w' (as a word in 71,...,9, Ynt1) One
can obtain the original w by substituting v,+; = 1 in w'.

Exercise 3.3 From the example 3.1 and using the construction above
the reader should be able to determine the fundamental group of the
curves:

1. (Z2 - XY)Y =0,
2. (72 - XY)(Z? + XY) = 0.

Note that both fundamental groups are non-isomorphic. The interest of
this pair of curves stands in the fact that the braid associated to T in
remark 2.5 coincide. Also note that the curve 1 belongs to the case 1
and the curve 2 to the second case in the previous paragraph.

Exercise 3.4 Calculate the fundamental group of the curves:
1. (723 -XY?) =0,
2. (Z? - XY) =0.

using the projection from [0:1:0].

In this case, note that the fundamental groups are again different,
and the braids also coincide. The difference with respect to the previous
ecxample is that both curves belong to case 2.
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Figure 6.
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4 Alexander Invariants

Let X be a connected CW-complex such that H;(X) has a surjective ho-
momorphism ¢ onto a group A (note A has to be abelian). Since H;(X)
is the quotient of 71 (X) by the commutator subgroup, then 7 (X) also
has a surjective homomorphism 1& onto A and hence there is a short

exact sequence ~
0 — warl(X)gA — 0.

Let X be the covering corresponding to the normal subgroup K C
m1(X). The group of covering transformations of ¢ is A and acts on
HZ(XK) for any ¢ > 0. Such an action makes Hl(XK) a module over
the group algebra Az = Z[A]. The module H;(Xg) is called the i-th
Alexander module of X with respect to ¢ (and A). Note the
following facts:

1. We will assume (up to homotopy equivalence) that X has a single
0-simplex ey and therefore the 1-simplices of X can be consid-
ered as elements of 71(X). Note that this is possible since X is
connected.

2. X is a (possibly non-finite) CW-complex with Co(Xx) = Ay,
3. If A is finitely generated, then Ay is a Noetherian ring.

One can lift the generators of the cell complex C;(X) to the covering
complex X in a natural way so that the group A of deck transforma-
tions acts freely and transitively on the lifting. Extending this lifting to
Ci(X) one has C;j(Xk) = C;(X) @7 Az. Note that only the lifting map
applied to C1(X) is not a homomorphism. For instance, if the lifting of
the 1-cell e € C1(X) is e ® 1, the lifting of —e is —e ® 9(e) ! which is
not its opposite.

The corresponding boundary map is the following morphism

. [ 6(m) ®a iti>2
‘L(Z@“)_{ 0 ® (P(z) —1)a ifi=1

for 7 # 1, where &(z) makes sense by 1.
In order to describe the boundary map for 7 = 1, let us fix for any 2-
cell eg € C2(X) a certain closed path dey representing its boundary as
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induced by the cell map on the boundary. It might happen that such map
is constant. In that case 52(62 ® a) = 0. Otherwise dey can be written
as a composition of closed paths (1-cells), say dey = z7* - 5% - ... - 25,
where €1 = £1. Then 52 can be described recursively as a function of

its boundary ds(ep ® a) = D(dea,a) where

. [ z®a+ D(y,¢¥(z)a) ife=1
D(a”-y,a) = { —z @y ' (z)a+ D (y,¢ ' (z)a) ife=-1. (3)

Therefore H;(C,(Xx),0,) = Hi(Xk). Moreover, by 3, if A is a finitely
generated group, then the Alexander modules are finitely generated Az-
modules.

Let us consider for now the particular case where A has a single generator
t (that is A = Z/kZ and k > 0). If one uses multiplicative notation
for the operation in A, then Az can be described as Z[t,t 1], the ring
of Laurent polynomials in one variable with integer coefficients (with
the relationship t* = 1). Tensoring the ring Az by C one obtains a
Principal Ideal Domain Ac = C[t,#7!] and hence the extended modules
H;(Xx,C) have a decomposition as finitely generated modules on Ac .

Hi(Xk,C) 2 AL & Ac /N @ ... ® A /XL, (4)

In the case where the first Alexander module is a torsion module (i.e.
r1 = 0) then the polynomial A = A} - ... - AL from (4) is called the
Alexander polynomial of X.

Let us consider the endomorphism of modules defined by multiplication
by t — 1. By definition one has the following short exact sequence

12

CZ(X) — 0.

Hence

Hi(Xx,C)'S Hi(Xg,C) D Hi(X,C) S Hy(Xg,C) 'S Ho(Xg,C).

Note that
Hy(Xg)=——"""S5—=2Cy(X) =2Z.

Hence (5) becomes

Hi(Xx,C)'S B (Xx,C) S Hm(x,c) S c Sc. (6)
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Also note that the coker of the map
Ac /) 5 Ac/x

is non-trivial if and only if A(1) # 0. Hence, if H,(Xx,C) = C, then
H(Xg,C) is a torsion module and ¢ — 1 is not a factor of its Alexander
polynomial.

Let us get back to the general case of a abelian group A. Our purpose
now is to give a finite free presentation of the first Alexander invariant in
the case where X is a finite CW-complex of dimension 2. This is the case
for complements of links in S? or complements of curves in the projective
complex plane (cf. [18]). In order to do so we will first calculate a
presentation for the homology of X relative to &y, the inverse image of
the O-cell in Xx. Note that CO(X'K) = Zep and hence

CZ(XK,gO) — Cl(XK,gg) — Hl(XK,go) — 0 (7)

provides a finite free presentation of H;(Xf,ép). Also note that a
presentation of 7 (X) can be given by using its 1-cells as generators,
say Zi,...,%p, and the boundaries of its 2-cells as relations, say dy; =
T1yeeey OYp, = Tp,, where b; = dim C;(X'). Therefore (7) becomes

AR B A% o H (Xk, &) — 0. (8)
The matrix Mat(¢) of ¢ can be determined as follows from (3)

Mat(¢) = (D;(r:))

where
Dj(z;) =di5 o
i) = { 5P e ®
Dj(zx') = Dj(x) + 9(z)Dj(z').
Let us recall the definition of Fitting ideal of a finitely generated module
M over a commutative noetherian ring with unity R. Let

R*" 4R 5 M — 0

be a finite free presentation of the R-module M. Let Mat(¢) be the
(n x m) R-matrix of ¢.
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Definition 4.1 The k-th Fitting ideal of M is defined as the ideal
generated by

0 if k<maz{0,n—m}
1 if k>n
minors of Mat(¢) of order (n —k+1) otherwise.

Such an ideal does not depend on the presentation of M and it is denoted
by Fi.(M) or simply Fy if no ambiguity seems likely to arise.

Since

Dj(zrzY) =(z)D;(r) Vj=1,..,b
D;(1) =0
Dj(z;r;) = 0;; if r; does not depend on z;

then the Fitting ideals of Hy (X K, €0) do not depend on the isomorphism
class of m1(X). Note that the previous paragraph shows that Fox calcu-
lus —defined by (9) — gives a finite free presentation of H; (Xx,&). Also
note that if we had a finite free presentation of H;(Xx) and A = Z,
then the Alexander polynomial could be characterize as generator of
Fi(H,(Xg)). This remark allows for a more general invariant of the
first Alexander module.

Definition 4.2 In the above conditions the k-th characteristic vari-
ety of the R-module M can be defined as

Chary, (M) := Suppg (R/Fx(M)),

where Suppr(N) is the set of prime ideals p in R such that Ny # 0.
In the case where M = Hy(Xk,C) and A = Z, we will define the i-th
characteristic variety of X, denoted by Char;(X), as Char;(H,(Xg,C)).

In other words, the set of zeroes of the Alexander polynomial coincides
with Spec Char;(X) C Spec Ac =C*.

We are hence left to describe the relationship between both Char;(X)
and Char;(H;(Xx,€)). One has the following result

Proposition 4.3 The following equality holds except maybe for the aug-
mentation ideal, generated by (Hi(Xk)) — 1

Char;(X) = Char; 1 (H,(Xk, é0; C)). (10)
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Proof. see [8].
The characteristic varieties can also be calculated by means of a more
algebraic point of view, as described in [16] and [4]. This calculation
refers to the existence of certain linear systems of plane curves called
superabundant (that is, with higher dimension than expected). For
instance, as mentioned in the Introduction, Zariski found a sextic with
6 cusps of type Ay on a conic (recall that a singular point P is of type Ay
if the equation of the curve can be written locally around P as z2 — y?).
The superabundance of the linear system of conics passing through the
six cusps results in a non-trivial characteristic varieties, and hence non-
trivial Alexander polynomial.
As mentioned in the Introduction, the characteristic varieties are topo-
logical invariants of the complement of a plane curve, they can be used
to distinguish non-isotopic curves. A typical example is given by a sextic
with six cusps Ay not lying on a conic. The absence of superabundance
in this case results in a trivial Alexander polynomial, and hence, the
sextic of Zariski cannot be isotopic to this one.
Several examples of non-isotopic curves with the same combinatorics
(basically same degree, number of components and type of singularities)
have been given. They are called Zariski pairs (cf. [1]) and reveals
the fact that not only the set of singularities, but their position affects
the topology of the pair (P?,C). As an example of this we can give the
following

Proposition 4.4 There exist two sextics C1 and Co whose singularities
are of type A7 and Ay so that

AC) =1
A(Cy) =t —t + 1.

Proof. Their construction can be found in [5]. For the curve Cy there
exists a conic passing through the singular point with multiplicity 12,
whereas for C; there isn’t. The existence (or not) of a superabundant
linear system of conics with such multiplicity of intersection at the A;7
produces a non-trivial (resp. trivial) first characteristic variety for Co
(resp. for Cy).

The example is a counterexample to the following conjecture by
Degtyarev [9], see also [25] and [26]
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Conjecture 4.5 Consider irreducible sextics with a fived singular set
of the form alAy + > bgAzq1 + cEg, > dbs + 2¢ = 6, and put ey =
10 — > bq|3d/2] — 3c. Then

1. any two sextics with a = apmqy are isotopic to each other and are
abundant.

2. if a < Gmaz, then there are exactly two isotopy classes, one abun-
dant and one non-abundant.

The characteristic varieties of a curve C is a more sensitive invariant to
the topology of the complement than just the Alexander polynomial.
This is specially true in the reducible case. The following is an example
of a Zariski pair with trivial Alexander polynomial.

Let us consider the following set of conditions on (complex) projective
plane curves

1 C has two irreducible components C1 and Co.
2 C is a smooth conic.

3 Cgq is a curve of degree 4 having two singular points of type Az
(tacnode) and A; (node).

4 C;NCq = {P}, and P is a smooth point of Cy. Then (C, P) is
a singularity of type A5.

5 The tangent line to C at P does not pass through the tacnode.
5" The tangent line to C at P passes through the tacnode.

In [4], it is proven that there exists a sextic curve C ™ satisfying con-
ditions 1-5 and another sextic C () satisfying 1-4 and 5’. The following
proposition is also proven

Proposition 4.6 1. The Alezander polynomials of c® agnd C®
are both trivial.

Char (CM) = {(1,1)}
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whereas
Char,(C?) = {(1,1),(~1,1), =1, -1), (—V—1,-1)}.
Therefore CW® and CP constitute a Zariski pair.

Thera are also examples showing that characteristic varieties do not con-
tain as much information as the fundamental group does. For instance
Artal and Carmona exhibit in [3] a Zariski pair with non-isomrphis fun-
damental groups, but both trivial characteristic varieties. This keeps
open the problem of finding finer and finer invariants which can be ef-
fectively calculated but that keep the esential information about the
topology of the complement of curves.
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