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WEAKLY LEFSCHETZ SYMPLECTIC MANIFOLDS

M. FERNÁNDEZ, V. MUÑOZ, AND L. UGARTE

Abstract. For a symplectic manifold, the harmonic cohomology of symplec-
tic divisors (introduced by Donaldson, 1996) and of the more general sym-
plectic zero loci (introduced by Auroux, 1997) are compared with that of its
ambient space. We also study symplectic manifolds satisfying a weakly Lef-
schetz property, that is, the s–Lefschetz property. In particular, we consider

the symplectic blow-ups C̃P m of the complex projective space CP m along
weakly Lefschetz symplectic submanifolds M ⊂ CP m. As an application we
construct, for each even integer s ≥ 2, compact symplectic manifolds which
are s–Lefschetz but not (s + 1)–Lefschetz.

1. Introduction

One of the main results of Hodge theory states that any de Rham cohomology
class on a compact oriented Riemannian manifold has a unique harmonic repre-
sentative. In the symplectic setting a notion of harmonicity can be introduced as
follows [3]. Let (M, ω) be a 2n–dimensional symplectic manifold. A closed form
α on M is called symplectically harmonic if δα = 0, where δ denotes the Koszul
differential [16]. However, a symplectic version of the above result does not hold
in general. In fact, Mathieu [19] proved that any de Rham cohomology class has
a (not necessarily unique) symplectically harmonic representative if and only if
(M, ω) satisfies the hard Lefschetz property, i.e. the map

(1) Ln−k : Hk(M) −→ H2n−k(M)

given by Ln−k[α] = [α ∧ ωn−k] is onto for all k ≤ n − 1.
In this paper we deal with symplectic manifolds satisfying a weaker property:

following [9], we shall say that (M, ω) is an s–Lefschetz symplectic manifold, 0 ≤ s ≤
n − 1, if (1) is an epimorphism for all k ≤ s. As an obvious fact, whenever (M, ω)
is not hard Lefschetz, there is some s ≥ 0 such that (M, ω) is s–Lefschetz but not
(s + 1)–Lefschetz. So, it seems interesting to understand the way this phenomenon
occurs on non-hard Lefschetz symplectic manifolds, in particular if there is some
restriction for the possible values of the level s at which the Lefschetz property
can be lost, how this affects other symplectic invariants of the manifold, such as
the above-mentioned harmonicity, or if the s–Lefschetz property is preserved under
the usual constructions of new symplectic manifolds from old ones, for instance the
symplectic blow up [20], the symplectic divisors constructed by Donaldson in [5]
and the symplectic zero loci constructed by Auroux in [1]. Our purpose in this
paper is to explore these questions, as we explain next.
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Regarding symplectic harmonicity, in Section 2 we recall some results on the
harmonic cohomology of (M, ω) and show how the s–Lefschetz property is related
to the existence problem of symplectically harmonic representatives of de Rham
classes of M . Let us denote by Hk

hr(M, ω) the space of harmonic cohomology in
degree k, that is, the subspace of the de Rham cohomology group Hk(M) con-
sisting of all classes which contain at least one symplectically harmonic k–form.
In Proposition 2.5 we prove that a 2n–dimensional symplectic manifold (M, ω) is
s-Lefschetz if and only if H2n−k

hr (M, ω) = H2n−k(M) for every k ≤ s; moreover, the
latter condition implies that Hk

hr(M, ω) = Hk(M) for every k ≤ s+ 2. In the proof
of this proposition, which can be seen as a refinement of the result of Mathieu,
we follow the approach by Yan [27] which uses the theory of infinite-dimensional
sl(2, C)–representations.

Section 3 is devoted to the study of the harmonic cohomology of the symplectic
submanifolds constructed by Donaldson and Auroux. Given a compact symplectic
manifold (M, ω) of dimension 2n such that [ω] ∈ H2(M) admits a lift to an integral
cohomology class, let L → M be a complex line bundle with first Chern class
c1(L) = [ω]. Donaldson introduces in [5] a technique known as asymptotically
holomorphic theory which allows him to find a section sk of L⊗k whose zero locus is
a symplectic submanifold (Z, ωZ) of codimension 2 in M which realizes the Poincaré
dual of k [ω] for any sufficiently large integer k, and such that the inclusion j : Z ↪→
M is (n − 1)–connected. Such sk is nearly holomorphic, in the sense that ∂̄Jsk is
very small (for a previously chosen, compatible almost complex structure J). As
these manifolds are generalizations of (very ample) divisors for complex algebraic
manifolds, we shall call them symplectic divisors. (In [9] they were called Donaldson
symplectic submanifolds.) Note also that in [24] a different proof (using microlocal
techniques) of the construction of these symplectic divisors is given.

We show the following relation between the harmonic cohomologies H∗
hr(Z, ωZ)

and H∗
hr(M, ω).

Theorem 1.1. If k is very large and (Z, ωZ) is a symplectic divisor given as the
zero locus of a section of L⊗k, then the inclusion j : Z ↪→ M induces an isomorphism
j∗ : Hi

hr(M, ω) −→ Hi
hr(Z, ωZ) for any i < n−1, and a monomorphism for i = n−1.

Moreover, Hi
hr(Z, ωZ) and Hi+2

hr (M, ω) are isomorphic for every n ≤ i ≤ 2(n − 1).

Roughly speaking, this result says that a symplectic divisor inherits essentially
the same harmonic cohomology as that of its ambient space, with the only possible
exception of having more symplectically harmonic forms in the middle degree n−1.

Auroux has generalized Donaldson’s construction in [1]. Let (M, ω) be a com-
pact symplectic manifold of dimension 2n with [ω] ∈ H2(M) admitting a lift to an
integral cohomology class, let L be a complex line bundle with c1(L) = [ω], and
let E be any hermitian vector bundle over M of rank r. Then Auroux constructs
symplectic submanifolds (Zr, ωZr

) ↪→ (M, ω) as zero sets of (asymptotically holo-
morphic) sections of E ⊗ L⊗k, for any integer number k large enough. We shall
call these (Zr, ωZr

) symplectic zero loci . (In [8] they were called Auroux symplectic
submanifolds.) Note that Paoletti [23] also gives a construction of the symplectic
zero loci. These submanifolds also satisfy a Lefschetz theorem on hyperplane sec-
tions, that is, the inclusion j : Zr ↪→ M induces j∗ : Hi(M) → Hi(Zr) which is an
isomorphism for i < (n − r) and a monomorphism for i = (n − r).
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A result like Theorem 1.1 does not hold in general for the symplectic zero loci.
Indeed, the harmonic cohomology of such symplectic submanifolds has a very dif-
ferent behaviour with respect to its ambient space, and surprisingly there exist
submanifolds having strictly more harmonic cohomology classes than their ambient
spaces. The proof of the following result is provided by Example 3.3.

Theorem 1.2. There exists a symplectic 10–dimensional manifold (X, Ω) with line
bundles E and L, where c1(L) = [Ω], such that for k sufficiently large, the (codimen-
sion 2) symplectic zero loci (Z1, ΩZ1) constructed as zero sets of sections of E⊗L⊗k

satisfy that the inclusion j : Z1 ↪→ X induces an isomorphism between the de Rham
cohomology groups H3(Z1) and H3(X), but dimH3

hr(Z1, ΩZ1) > dim H3
hr(X, Ω).

Also in Examples 3.4 and 3.5 different behaviours of the harmonic cohomology
of the symplectic zero loci are shown.

Given a compact symplectic manifold (M, ω) of dimension 2n, we can assume,
without loss of generality, that the symplectic form ω is integral (by perturbing
and rescaling). A theorem of Gromov and Tischler [11, 12, 26] (reproved later in
[21] using asymptotically holomorphic theory, and in [24] using microlocal tech-
niques) states that there is a symplectic embedding i : (M, ω) −→ (CPm, ω0), with
m ≥ 2n + 1, where ω0 is the standard Kähler form on CPm defined by its natu-
ral complex structure and the Fubini–Study metric. We consider the symplectic
blow-up C̃Pm of CPm along the embedding i (see [20]). Then, C̃Pm is a simply
connected compact symplectic manifold. In Section 4 we study the s–Lefschetz
property of C̃Pm, m ≥ 2n + 1. More concretely we have the following result.

Theorem 1.3. If (M, ω) is an s–Lefschetz compact symplectic manifold of di-
mension 2n, then the symplectic blow-up C̃Pm (m ≥ 2n + 1) is (s + 2)–Lefschetz.
Moreover, if M is parallelizable and not s–Lefschetz, then C̃Pm is not (s + 2)–
Lefschetz.

This will be proved in Theorem 4.2 and Proposition 4.4. Recently Cavalcanti [4]
has investigated the hard Lefschetz property of symplectic blow-ups of non-hard
Lefschetz symplectic manifolds along hard Lefschetz symplectic submanifolds. In
particular, he obtains that the symplectic blow-up of a hard Lefschetz symplectic
manifold along a hard Lefschetz submanifold is always hard Lefschetz. Such a result
can also be proved with the arguments of Theorem 1.3 as we note in Remark 4.3.

In [9] examples of compact symplectic manifolds which are s–Lefschetz but not
(s + 1)–Lefschetz are constructed for each s ≤ 2. As an application of Theorem 1.3
and of the results of Section 2 on the harmonic cohomology of symplectic com-
plete intersections of symplectic blow-ups, we prove in Section 5 that for each even
integer number s ≥ 2, there is a simply connected compact symplectic manifold
of dimension 2(s + 2) which is s–Lefschetz but not (s + 1)–Lefschetz. Note that
2(s + 2) is the lowest possible dimension where such a manifold can live. With the
same techniques, we also show a simply connected symplectic 10–manifold which is
3–Lefschetz but not 4–Lefschetz.

2. Harmonic cohomology of s-Lefschetz symplectic manifolds

We recall some definitions and results about the symplectic codifferential and
symplectically harmonic forms. Let (M, ω) be a symplectic manifold of dimen-
sion 2n. Denote by Ω∗(M), X(M) and F(M) the algebras of differential forms,
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vector fields and differentiable functions on M , respectively. The isomorphism

� : X(M) −→ Ω1(M)

given by �(X) = ιX(ω) for X ∈ X(M), where ιX denotes the contraction by X,
extends to an isomorphism of algebras � :

⊕
k≥0 Xk(M) −→

⊕
k≥0 Ωk(M). Then,

G = −�−1(ω) is the skew-symmetric bivector field dual to ω. (G is the unique
non-degenerate Poisson structure [17] associated with ω.) The Koszul differential
δ : Ωk(M) −→ Ωk−1(M) is defined by

δ = [ιG, d].

In [3] Brylinski proved that the Koszul differential is a symplectic codifferential of
the exterior differential with respect to the symplectic star operator defined as fol-
lows. Denote by Λk(G), k ≥ 0, the associated pairing Λk(G) : Ωk(M) × Ωk(M) −→
F(M) which is (−1)k–symmetric (i.e. symmetric for even k, anti-symmetric for
odd k). Let vM be the volume form on M given by vM = ωn

n! . Imitating the Hodge
star operator for Riemannian manifolds, the symplectic star operator

∗ : Ωk(M) −→ Ω2n−k(M)

is defined by the condition β ∧ (∗α) = Λk(G)(β, α) vM , for α, β ∈ Ωk(M). An easy
consequence is that ∗2 = Id, and if α ∈ Ωk(M), then

δ(α) = (−1)k+1(∗ ◦ d ◦ ∗)(α).

A k–form α ∈ Ωk(M) is said to be symplectically harmonic if dα = δα = 0.
Let Ωk

hr(M, ω) = {α ∈ Ωk(M) | dα = δα = 0} be the space of the symplectically
harmonic k–forms.

Since ω is a closed form, for any p, k ≥ 0 the homomorphism

Lp : Ωk(M) −→ Ω2p+k(M)

given by Lp(α) = α∧ωp for α ∈ Ωk(M) satisfies that [Lp, d] = 0. Relations between
the operators ιG, L, d and δ are proved by Yan in [27]. Here we shall need the
following:

(2) [L, δ] = d.

In [27] it is also proved that for any k ≥ 0 the map Ln−k : Ωk(M) −→ Ω2n−k(M)
is an isomorphism, which also induces an isomorphism when restricted to the sub-
spaces of harmonic forms, as follows from (2).

Lemma 2.1 (Duality on harmonic forms). The map

Ln−k : Ωk
hr(M, ω) −→ Ω2n−k

hr (M, ω)

is an isomorphism for k ≥ 0.

Recall that a non-zero k–form α on M , with k ≤ n, is called primitive if
Ln−k+1(α) = 0.

Lemma 2.2. Any closed primitive form is symplectically harmonic.

Proof. It follows directly from Yan’s relations. In fact, from Corollary 2.6 in [27]
we have that α is a primitive form if and only if ιG(α) = 0. Therefore, if in addition
α is closed, then δα = [ιG, d](α) = 0. �
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For the de Rham cohomology classes of M , we consider the vector space

Hk
hr(M, ω) =

Ωk
hr(M, ω)

Ωk
hr(M, ω) ∩ Im d

consisting of the classes in Hk(M) containing at least one symplectically harmonic
form.

The following result shows some special cases when Hk
hr(M, ω) coincides with

Hk(M).

Proposition 2.3. Let (M, ω) be a symplectic manifold of dimension 2n.
(i) If there exists some integer k ≤ n with H2n−k+2(M) = 0, then for any

closed k–form α there is a k–form α̃ cohomologous to α which is symplec-
tically harmonic; in particular, Hk

hr(M, ω) = Hk(M).
(ii) Any cohomology class of degree ≤ 2 has a symplectically harmonic repre-

sentative.

Proof. Let a = [α] ∈ Hk(M). Since Ln−k+1(α) is a closed (2n − k + 2)–form and
H2n−k+2(M) is zero, there is some β ∈ Ω2n−k+1(M) such that Ln−k+1(α) = dβ.
But the map Ln−k+1 : Ωk−1(M) −→ Ω2n−k+1(M) is surjective, so there exists
γ ∈ Ωk−1(M) satisfying β = Ln−k+1(γ). Hence Ln−k+1(α) = dβ = Ln−k+1(dγ),
i.e. Ln−k+1(α−dγ) = 0. Therefore, the form α̃ = α−dγ is cohomologous to α and
symplectically harmonic by Lemma 2.2, because it is primitive.

The second part (proved first by Mathieu [19]) follows from (i) for degree ≤ 1.
For degree 2 see [27, page 150], where a similar argument is used. �

From the previous results, if (M, ω) is a simply connected compact symplectic
manifold, then every class in Hk(M) has a symplectically harmonic representative
for k ≤ 3.

Corollary 2.4. Let (M, ω) be a simply connected symplectic compact manifold of
dimension 6. Then every de Rham cohomology class of degree k 
= 4 admits a
symplectically harmonic representative.

Note that Lemma 2.1 implies that the homomorphism

Ln−k : Hk
hr(M, ω) −→ H2n−k

hr (M, ω)

is surjective. (However, the duality on harmonic forms may not be satisfied at the
level of the spaces H∗

hr(M, ω).) Since H2n−k
hr (M, ω) is a subspace of the de Rham

cohomology H2n−k(M), we conclude (see [14, Corollary 1.7]) that

(3) H2n−k
hr (M, ω) = Im (Ln−k : Hk

hr(M, ω) −→ H2n−k(M)).

Recall that a symplectic manifold (M, ω) of dimension 2n is said to be s–Lefschetz
with 0 ≤ s ≤ n − 1, if the map Ln−k : Hk(M) −→ H2n−k(M) is an epimorphism
for all k ≤ s. In the compact case we actually have that Ln−k are isomorphisms
because of Poincaré duality. Note that M is (n − 1)–Lefschetz if M satisfies the
hard Lefschetz theorem.

Proposition 2.5. Let (M, ω) be a symplectic manifold of dimension 2n and let
s ≤ n − 1. Then the following statements are equivalent:

(i) (M, ω) is s–Lefschetz.
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(ii) Hk
hr(M, ω) = Hk(M) for every k ≤ s + 2, and H2n−k

hr (M, ω) = H2n−k(M)
for every k ≤ s.

(iii) H2n−k
hr (M, ω) = H2n−k(M) for every k ≤ s.

Proof. Clearly (ii) implies (iii). Let us see also that (iii) implies (i). Let k ≤ s.
From (3) we have that

H2n−k
hr (M, ω) = Im (Ln−k |Hk

hr(M,ω) : Hk
hr(M, ω) ↪→ Hk(M) −→ H2n−k(M)).

If H2n−k
hr (M, ω) = H2n−k(M), then the map Ln−k |Hk

hr(M,ω) is onto, and therefore
the homomorphism Ln−k : Hk(M) −→ H2n−k(M) must also be onto. So M is
s–Lefschetz.

We want to show that (i) implies (ii). It is enough to prove that Hk
hr(M, ω) =

Hk(M) for every k ≤ s+2, because in this case, for k ≤ s, we have H2n−k
hr (M, ω) =

Im (Ln−k : Hk(M) −→ H2n−k(M)) = H2n−k(M) using the s–Lefschetz property.
Let us see that Hk

hr(M, ω) = Hk(M) for every k ≤ s + 2, by induction on s.
For s = 0, we recall that M is 0–Lefschetz, as this is satisfied by every symplectic
manifold. Now for any symplectic manifold, any class of degree ≤ 2 admits a
harmonic representative by Proposition 2.3(ii).

Now take s > 0, and suppose that if (M, ω) is (s − 1)–Lefschetz, it holds
Hk

hr(M, ω) = Hk(M) for k ≤ s+1. We have to prove that Hs+2
hr (M, ω) = Hs+2(M)

if M is s–Lefschetz. Let α be a closed element of degree s + 2. Consider the map
Ln−s−1 : Ωs+2(M) −→ Ω2n−s(M). Then Ln−s−1(α) is a closed (2n − s)–form. By
the s–Lefschetz property there is a closed s–form h (which we may suppose to be
symplectically harmonic, by induction hypothesis) such that

Ln−s−1(α) = Ln−s(h) + dβ ,

for some β ∈ Ω2n−s−1(M). By the surjectivity of

Ln−s−1 : Ωs+1(M) −→ Ω2n−s−1(M)

we get the existence of some (s + 1)–form γ with β = Ln−s−1(γ). Therefore
Ln−s−1(α) = Ln−s(h) + Ln−s−1(dγ) and hence

(4) Ln−s−1(α − L(h) − dγ) = 0.

Put α̃ = α−L(h)− dγ. By (4) and Lemma 2.2 we have that α̃ is symplectically
harmonic. On the other hand, since h is symplectically harmonic, we see that L(h)
is symplectically harmonic using (2). Hence α− dγ is symplectically harmonic and
cohomologous to the original α. �

Note that this result implies that every de Rham cohomology class of M admits a
symplectically harmonic representative if and only if (M, ω) is hard Lefschetz, which
is Mathieu’s theorem. Also, if M is a simply connected compact symplectic manifold
of dimension 6, then (M, ω) is hard Lefschetz if and only if every cohomology class
of degree 4 has a symplectically harmonic representative.

If M is a manifold of finite type, i.e. all the de Rham cohomology groups
Hk(M) are finite dimensional, then we shall denote by bhr

k (M, ω) the dimension
of the space Hk

hr(M, ω). As usual, the Betti numbers of M will be denoted by
bk(M) = dimHk(M).

It is well known that if (M, ω) is compact and hard Lefschetz, the odd Betti
numbers of M are even. When (M, ω) is s–Lefschetz we have the following propo-
sition.
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Proposition 2.6. Let (M, ω) be a compact symplectic manifold of dimension 2n.
Suppose that (M, ω) is s–Lefschetz with s ≤ n − 1. Then the odd Betti numbers
b2i−1(M) are even for 2i − 1 ≤ s, and bhr

2n−2j+1(M, ω) is even for s < 2j−1 ≤ s+2.

Proof. Put k = 2i − 1 ≤ s. Let us consider the non-singular pairing

p : Hk(M) ⊗ H2n−k(M) −→ R

given by

p([α], [β]) =
∫

M

α ∧ β,

for [α] ∈ Hk(M) and [β] ∈ H2n−k(M). Let 〈 , 〉 be the skew-symmetric bilinear
form defined on Hk(M) by

〈[α], [α′]〉 = p([α], Ln−k[α′]),

for [α], [α′] ∈ Hk(M). It is well known that the rank of 〈 , 〉 is an even number.
The non-singularity of p implies that the rank of 〈 , 〉 equals the rank of the map
Ln−k : Hk(M) −→ H2n−k(M), that is, rank 〈 , 〉 = b2n−k(M) since (M, ω) is s–
Lefschetz. Hence bk(M) is even by Poincaré duality.

For the final part, take k = 2j − 1 with s < k ≤ s + 2. Now, the previous ar-
gument also shows that bhr

2n−k(M, ω) is even because the s–Lefschetz property im-
plies Hk(M) = Hk

hr(M, ω) by Proposition 2.5 and, on other hand, H2n−k
hr (M, ω) =

Im (Ln−k). Therefore the rank of 〈 , 〉 is an even number which equals

dim Im (Ln−k) = bhr
2n−k(M, ω).

�

3. Harmonic cohomology of symplectic divisors

and symplectic zero loci

In this section we study the relation between the harmonic cohomology of sym-
plectic divisors and symplectic zero loci and that of the ambient space.

Let (M, ω) be a symplectic manifold of dimension 2n. A cohomology class a ∈
Hi(M) satisfying Ln−i+1

[ω] (a) = 0 in H2n−i+2(M) will be called primitive, and we
shall denote by Pi(M, ω) the subspace of Hi(M) consisting of all the primitive
classes. From Corollary 2.6 in [27] for the special case of harmonic forms, it follows
that for any 2 ≤ i ≤ n the subspace Hi

hr(M, ω) of Hi(M) is given by

(5) Hi
hr(M, ω) = Pi(M, ω) + L[ω]

(
Hi−2

hr (M, ω)
)
,

where Pi(M, ω) = { a ∈ Hi(M) | Ln−i+1
[ω] (a) = 0}.

Recall that given a compact symplectic manifold (M, ω) of dimension 2n such
that [ω] ∈ H2(M) admits a lift to an integral cohomology class, Donaldson proves [5]
the existence of a symplectic submanifold Z of codimension 2 in M that realizes the
Poincaré dual of k [ω] for any sufficiently large integer k. We call this submanifold
a symplectic divisor . Moreover, the inclusion j : Z ↪→ M is (n− 1)–connected, that
is, j∗ : Hi(M) −→ Hi(Z) is an isomorphism for i < (n − 1) and a monomorphism
for i = (n − 1). Let us denote by ωZ = j∗ω the symplectic form on Z.

Proof of Theorem 1.1. By (5), for the symplectic divisor Z we have

Hi
hr(Z, ωZ) = Pi(Z, ωZ) + L[ωZ ]

(
Hi−2

hr (Z, ωZ)
)
,

for any 2 ≤ i ≤ n − 1, where Pi(Z, ωZ) = { b ∈ Hi(Z) | Ln−i
[ωZ ](b) = 0}.
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On the other hand, in [9] it is proved that for any i ≥ n, a cohomology class
a ∈ Hi(M) satisfies j∗a = 0 if and only if a ∪ [ω] = 0.

Let us first prove that j∗(Pi(M, ω)) ⊂ Pi(Z, ωZ) for any 2 ≤ i ≤ n−1. Given a ∈
Pi(M, ω), let us consider b = j∗a ∈ Hi(Z). Since 0 = Ln−i+1

[ω] (a) = a∪ [ω]n−i+1 and
n+1 ≤ 2n−i (because n−1 ≥ i), the cohomology class Ln−i

[ω] a ∈ H2n−i(M) satisfies
j∗(Ln−i

[ω] a) = 0. But j∗ ◦ L[ω] = L[ωZ ] ◦ j∗, which implies Ln−i
[ωZ ](b) = j∗(Ln−i

[ω] a) = 0,
that is, b ∈ Pi(Z, ωZ). Now it is easy to see that j∗ : Pi(M, ω) −→ Pi(Z, ωZ) is
an isomorphism for i < (n − 1) and a monomorphism for i = (n − 1), because
j∗ : Hi(M) −→ Hi(Z) is also.

Now, we prove by induction that j∗(Hi
hr(M, ω)) ⊂ Hi

hr(Z, ωZ) for any i ≤ (n−1).
This is clear for i = 0, 1, because Hi

hr = Hi. Let us fix i with 2 ≤ i ≤ (n − 1), and
suppose that the inclusion holds in any degree < i. Since j∗ ◦L[ω] = L[ωZ ] ◦ j∗, and
j∗ takes the primitive classes of degree i on M to primitive classes of degree i on
the submanifold Z, the induction hypothesis and (5) imply that

j∗(Hi
hr(M, ω)) = j∗(Pi(M, ω)) + L[ωZ ]

(
j∗(Hi−2

hr (M, ω))
)

⊂ Pi(Z, ωZ) + L[ωZ ]

(
Hi−2

hr (Z, ωZ)
)

= Hi
hr(Z, ωZ).

Therefore, for any i ≤ (n − 1), we have the map j∗ : Hi
hr(M, ω) −→ Hi

hr(Z, ωZ),
which is just the restriction to the space of harmonic cohomology classes of the
homomorphism j∗ : Hi(M) −→ Hi(Z). Thus, j∗ is injective for i ≤ (n−1). Finally,
an inductive argument as above allows us to conclude that j∗ is surjective for
i < (n − 1).

To complete the proof, it remains to see that Hi
hr(Z, ωZ) and Hi+2

hr (M, ω) are
isomorphic for every n ≤ i ≤ 2(n − 1). Let us consider the spaces A and B given
by

A = ker(Li−n+2
[ω] : H2n−i−2

hr (M, ω) −→ Hi+2(M)),

B = ker(Li−n+1
[ωZ ] : H2n−i−2

hr (Z, ωZ) −→ Hi(Z)),

where n ≤ i ≤ 2n− 2. Next we see that j∗ induces an isomorphism between A and
B. Given a ∈ A, we denote b = j∗(a) ∈ H2n−i−2(Z). Since 2n − i − 2 < n − 1,
from the first part of the proof it follows that b ∈ H2n−i−2

hr (Z, ωZ). Moreover, since
a ∪ [ω]i−n+2 = 0 if and only if j∗(a ∪ [ω]i−n+1) = b ∪ [ωZ ]i−n+1 = 0, we have that
b ∈ B, that is, j∗(A) ⊂ B. Again, from the first part of the proof we conclude that
the map j∗ : A −→ B is an isomorphism, because (2n − i − 2) < (n − 1).

Finally, as an immediate consequence of (3) we get

Hi
hr(Z, ωZ) = Im (Li−n+1

[ωZ ] : H2n−i−2
hr (Z, ωZ) −→ Hi(Z)) ∼= H2n−i−2

hr (Z, ωZ)/B

∼= H2n−i−2
hr (M, ω)/A ∼= Im (Li−n+2

[ω] : H2n−i−2
hr (M, ω) −→ Hi+2(M))

= Hi+2
hr (M, ω),

for any n ≤ i ≤ (2n − 2), so bhr
i (Z, ωZ) = bhr

i+2(M, ω) for any such i. �

From now on, by a symplectic complete intersection (Zl, ωl) of (M, ω) we shall
mean a symplectic manifold obtained as

(6) (Zl, ωl) ⊂ (Zl−1, ωl−1) ⊂ · · · ⊂ (Z1, ω1) ⊂ (Z0 = M, ω0 = ω),
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where (Zi, ωi) is a symplectic divisor of (Zi−1, ωi−1), for any 1 ≤ i ≤ l. This is a
generalization of the complete intersections of complex algebraic manifolds to the
symplectic category.

Corollary 3.1. If (Zl, ωl) is a symplectic complete intersection of (M2n, ω), then
bhr
n−l(Zl, ωl) ≥ bhr

n−l(M, ω) and

bi(Zl) − bhr
i (Zl, ωl) = bi(M) − bhr

i (M, ω) , for i ≤ n − l − 1 ,
bi(Zl) − bhr

i (Zl, ωl) = bi+2l(M) − bhr
i+2l(M, ω) , for i ≥ n − l + 1 .

Proof. Applying l times Theorem 1.1 we have bhr
i (Zl, ωl) = bhr

i+2l(M, ω) for any
i ≥ n − l + 1. Since b2n−2l−i(Zl) = b2n−2l−i(M), the Poincaré duality for Zl and
M implies that bi(Zl) = bi+2l(M). This proves the corollary for any i ≥ n − l + 1.
For the remaining values of i, the result follows directly from Theorem 1.1. �

Next we want to show that a result like Theorem 1.1 for the (more general)
symplectic zero loci constructed by Auroux [1] does not hold in general.

Suppose that (M, ω) is a compact symplectic manifold of dimension 2n with
[ω] ∈ H2(M) admitting a lift to an integral cohomology class, let L be a line bundle
with first Chern class c1(L) = [ω] and let E be any hermitian vector bundle over M
of rank r. Then, Auroux constructs symplectic submanifolds (Zr, ωZr

) ↪→ (M, ω)
of dimension 2(n − r) as zero sets of sections of E ⊗ L⊗k, for any integer number
k large enough. Therefore their Poincaré duals are

PD[Zr] = cr(E ⊗ L⊗k) = kr[ω]r + kr−1c1(E)[ω]r−1 + · · · + cr(E).

These submanifolds also satisfy a Lefschetz theorem on hyperplane sections, that
is, the inclusion j : Zr ↪→ M induces j∗ : Hi(M) → Hi(Zr) which is an isomorphism
for i < (n − r) and a monomorphism for i = (n − r).

The strongest result in the direction of Theorem 1.1 for the symplectic zero loci
follows from [8, Theorem 4.4]. There it is proved that, for Zr ↪→ M , for large
enough k, and for each s ≤ (n − r − 1), if M is s–Lefschetz, then Zr is also s–
Lefschetz. In this situation, we have, thanks to Proposition 2.5, that Hi

hr(M, ω) ∼=
Hi(M) and Hi

hr(Zr, ωZr
) ∼= Hi(Zr), for i ≤ s+2. Therefore it follows that there is

an isomorphism j∗ : Hi
hr(M, ω) −→ Hi

hr(Zr, ωZr
), for any i ≤ min{s + 2, n− r− 1},

and a monomorphism in the case i = (n − r) ≤ (s + 2).
To disprove a result like Theorem 1.1 for general symplectic zero loci, we shall

prove Theorem 1.2. Moreover, we shall see examples of different behaviours for the
harmonic cohomology of a symplectic zero locus (Zr, ωZr

) and that of its ambient
space (M, ω). We shall do this in the simplest case, i.e. when M is not 1–Lefschetz.
By the above, Hi

hr(M, ω) ∼= Hi
hr(Zr, ωZr

), for i = 1, 2. So the first case to look at
is the study of the relation between

H3
hr(M, ω) and H3

hr(Zr, ωZr
).

In general, to compare them, we are going to assume n− r > 3, so that there is an
isomorphism j∗ : H3(M) → H3(Zr). We need the following lemma.

Lemma 3.2. Suppose that (Zr, ωZr
) ↪→ (M, ω) is a symplectic zero locus of codi-

mension 2r, and n − r > 3. In the situation above,

(i) bhr
3 (M, ω) = b3(M) + dim ker

(
Ln−2

[ω] : H1(M) → H2n−3(M)
)

− dim ker
(
Ln−1

[ω] : H1(M) → H2n−1(M)
)
,
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(ii)

bhr
3 (Zr, ωZr

) = b3(M) + dim ker
(
Ln−r−2

[ω] ∪ cr(E ⊗ L⊗k) : H1(M) → H2n−3(M)
)

− dim ker
(
Ln−r−1

[ω] ∪ cr(E ⊗ L⊗k) : H1(M) → H2n−1(M)
)

,

where ∪cr(E ⊗ L⊗k) : H∗(M) → H∗+2r(M) is interpreted as a map in
cohomology.

Proof. Let us start by computing H3
hr(M, ω). By (5),

H3
hr(M, ω) = P3(M, ω) + L[ω]

(
H1

hr(M, ω)
)
,

where P3(M, ω) = { a ∈ H3(M) | Ln−2
[ω] (a) = 0}. In the case i = 1, we have that

H1
hr(M, ω) = H1(M). Clearly

P3(M, ω) ∩ L[ω]

(
H1(M)

)
= L[ω]

(
ker(Ln−1

[ω] : H1(M) → H2n−1(M))
)

.

On the other hand, P3(M, ω) = ker
(
Ln−2

[ω] : H3(M) → H2n−1(M)
)

is dual, via

Poincaré duality, to coker
(
Ln−2

[ω] : H1(M) → H2n−3(M)
)
. Therefore

bhr
3 (M, ω) = dim coker

(
Ln−2

[ω] : H1(M) → H2n−3(M)
)

+ dim L[ω](H1(M)) − dim L[ω]

(
ker(Ln−1

[ω] : H1(M) → H2n−1(M))
)

= b3(M) − b1(M) + dim ker
(
Ln−2

[ω] : H1(M) → H2n−3(M)
)

+b1(M) − dim ker
(
Ln−1

[ω] : H1(M) → H2n−1(M)
)

= b3(M) + dim ker
(
Ln−2

[ω] : H1(M) → H2n−3(M)
)

− dim ker
(
Ln−1

[ω] : H1(M) → H2n−1(M)
)

.

This proves (i). Now we move on to compute H3
hr(Zr, ωZr

). First, note that for
i < n − r, if a ∈ H2n−2r−i(M), we have that

j∗(a) = 0 ⇐⇒ a ∪ cr(E ⊗ L⊗k) = 0.

Certainly, j∗(a) = 0 is equivalent to

0 =
∫

Zr

j∗(a) ∪ j∗(b) =
∫

M

a ∪ b ∪ cr(E ⊗ L⊗k),

for any b ∈ Hi(M) ∼= Hi(Zr). We use that PD[Zr] = cr(E ⊗ L⊗k) for the second
inequality. This is equivalent to a ∪ cr(E ⊗ L⊗k) = 0. With the aid of this, and
using (i), we have

bhr
3 (Zr, ωZr

) = b3(Zr) + dim ker
(
Ln−r−2

[ωZr ] : H1(Zr) → H2n−2r−3(Zr)
)

− dim ker
(
Ln−r−1

[ωZr ] : H1(Zr) → H2n−2r−1(Zr)
)

= b3(M) + dim ker
(
Ln−r−2

[ω] ∪ cr(E ⊗ L⊗k) : H1(M) → H2n−3(M)
)

− dim ker
(
Ln−r−1

[ω] ∪ cr(E ⊗ L⊗k) : H1(M) → H2n−1(M)
)

.

�
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Next we exhibit examples of compact symplectic manifolds (X, Ω) having sym-
plectic zero loci (Zr, ΩZr

) such that bhr
3 (Zr, ΩZr

) 
= bhr
3 (X, Ω). To define X, first

we consider the simply connected nilpotent Lie group G of dimension 6 consisting
of all the matrices of the form⎛⎜⎜⎜⎜⎜⎜⎝

1 y t + z t
2 u + y2

2 v

0 1 x x
2 y + x2

2 xy + x3

6
0 0 1 0 0 y
0 0 0 1 2x x2

0 0 0 0 1 x
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where x, y, z, t, u, v ∈ R. With respect to this global system of coordinates, the
forms

α1 = dx, α2 = dy, α3 = dz, α4 = dt − ydx,

α5 = du − tdx, α6 = dv − (z + t)dy −
(

u +
y2

2

)
dx

constitute a basis of left invariant 1–forms on G, and they satisfy

dα1 = dα2 = dα3 = 0, dα4 = α12, dα5 = α14, dα6 = α15 + α23 + α24,

where we denote αij···k = αi ∧ αj ∧ · · · ∧ αk. Because the structure constants are
rational numbers, Mal’cev Theorem [18] implies the existence of a discrete subgroup
Γ of G such that the quotient space M = Γ\G is compact. The cohomology of M
is given by

H0(M) = 〈1〉,
H1(M) = 〈[α1], [α2], [α3]〉,
H2(M) = 〈[α13], [α23], [α24], [α16 + α25 − α34], [α26 − α45]〉,
H3(M) = 〈[α126], [α135], [α136 + α146], [α136 + α235], [α236 + α345],

[α156 − α246 + α345]〉,
H4(M) = 〈[α2345], [α1236], [α2456], [α1456 + α2346], [α1356 + α1456]〉,
H5(M) = 〈[α23456], [α13456], [α12456]〉,
H6(M) = 〈[α123456]〉.

Therefore M is a symplectic manifold with symplectic form ω = α16 +α25−α34,
and b3(M) = 6. It is simple to check that L2

[ω] : H1(M) → H5(M) is the zero
map. On the other hand, L[ω] : H1(M) → H3(M) has kernel of dimension 1
and generated by [α1]. This follows from ω ∧ α1 = d(α45 + α35), so [α1] is in the
kernel, and [ω ∧ α2 ∧ α3] 
= 0, so [α2], [α3] are not in the kernel. By Lemma 3.2,
bhr
3 (M, ω) = 6 + 1 − 3 = 4.

But M is of dimension 6, and we need a manifold of dimension 2n, where n−r >
3. We shall fix 2n = 8 + 2r and define the 2n–dimensional manifold

X = M × CPr+1.
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Let ω0 be the Fubini-Study symplectic form of CPr+1, so X is a sympletic manifold
with symplectic form Ω = ω + ω0. Now

H1(X) = H1(M),

H3(X) = H3(M) ⊕ (H1(M) ⊗ H2(CP
r+1)),

...
H2n−3(X) = (H5(M) ⊗ H2r(CP

r+1)) ⊕ (H3(M) ⊗ H2r+2(CP
r+1)),

H2n−1(X) = H5(M) ⊗ H2r+2(CPr+1).

First we will compute bhr
3 (X, Ω) by using Lemma 3.2. Clearly b3(X) = 6 + 3 =

9. The map L[Ω] = L[ω] + L[ω0], so Ln−1
[Ω] : H1(X) → H2n−1(X) = H5(M) ⊗

H2r+2(CP
r+1) equals

Ln−1
[Ω] =

(
L[ω] + L[ω0]

)n−1 =
∑

j

(
n − 1

j

)
Lj

[ω]L
n−1−j
[ω0]

= 0,

since Lj
[ω] = 0 for j > 1 and Ln−1−j

[ω0]
= 0 for n − 1 − j > r + 1, i.e. for

j < 2. The map Ln−2
[Ω] : H1(X) → H2n−3(X) =

(
H5(M) ⊗ H2r(CPr+1)

)
⊕(

H3(M) ⊗ H2r+2(CP
r+1)

)
equals

Ln−2
[Ω] =

∑
j

(
n − 2

j

)
Lj

[ω]L
n−2−j
[ω0]

= L[ω]L
r+1
[ω0]

.

So ker
(
Ln−2

[Ω] : H1(X) → H2n−3(X)
)

= ker
(
L[ω] : H1(M) → H3(M)

)
= 〈[α1]〉.

Lemma 3.2 yields
bhr
3 (X, Ω) = 9 + 1 − 3 = 7,

for any value of r. With these preliminaries at hand, we are ready to start with
our examples.

Example 3.3. The compact symplectic manifold (X = M×CP2, Ω) has symplectic
zero loci Z1 ⊂ (X, Ω) such that bhr

3 (Z1, ΩZ1) > bhr
3 (X, Ω).

Proof. Let A = [α26 − α45] ∈ H2(M). To define symplectic zero loci Z1 ⊂ (X, Ω)
in the conditions required, we consider a rank 1 bundle E with first Chern class
c1(E) = A ∈ H2(M) ⊂ H2(X). Note that n = 5, r = 1 in this case. Hence
the symplectic zero locus Z1 ⊂ X has PD[Z1] = k[Ω] + A. To apply part (ii) of
Lemma 3.2, we need to compute the map L3

[Ω](kL[Ω] + LA) : H1(X) → H9(X) =
H5(M)⊗H4(CP2), where LA is the map in cohomology given by cup product with
the class A. This is

L3
[Ω](kL[Ω] + LA) = L3

[Ω]LA = L[ω]LAL2
[ω0]

,

since L4
[Ω] = 0, by the above calculation. This map has kernel of dimension 1,

generated by [α1], since L[ω]([α1]) = 0, but

(7) [α2] ∪ [α3] ∪ [ω] ∪ A 
= 0.

The map L2
[Ω](kL[Ω] + A) : H1(X) → H7(X) = (H5(M) ⊗ H2(CP2)) ⊕ (H3(M) ⊗

H4(CP
2)) equals

L2
[Ω](kL[Ω] + LA) = kL[ω]L

2
[ω0]

+ L[ω]LAL[ω0].
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The first component has kernel generated by [α1], by what we have seen above.
The second component has the same kernel again, so

dim ker
(
L2

[Ω](kL[Ω] + LA) : H1(X) → H7(X)
)

= 1.

Now Lemma 3.2 gives
bhr
3 (Z1, ΩZ1) = 9 + 1 − 1 = 9.

Therefore, bhr
3 (Z1, ΩZ1) > bhr

3 (X, Ω). �

Example 3.3 proves Theorem 1.2. Note that in the example above, all the cal-
culation hinges in (7). In fact, we have

Example 3.4. The compact symplectic manifold (X = M×CP
2, Ω) has symplectic

zero loci Z ′
1 ⊂ (X, Ω) such that bhr

3 (Z ′
1, ΩZ′

1
) = bhr

3 (X, Ω).

Proof. We take a class A ∈ H2(M) such that [α2]∪ [α3]∪ [ω]∪A = 0; for instance,
use A = [α13]. Then we obtain symplectic zero loci (Z ′

1, ΩZ′
1
) of (X, Ω) with

bhr
3 (Z ′

1, ΩZ′
1
) = bhr

3 (X, Ω) = 7. �

Finally we give an example where the symplectic zero loci has less harmonic
cohomology than the ambient submanifold.

Example 3.5. There are symplectic zero loci (Z3, ΩZ3) ⊂ (Z1, ΩZ1) ⊂ (X =
M × CP4, Ω) such that bhr

3 (Z3, ΩZ3) < bhr
3 (Z1, ΩZ1).

Proof. Consider the manifold (X = M × CP4, Ω) of dimension 14 (now n = 7 and
r = 3). Again take A = [α26 − α45] ∈ H2(M) and let E be a rank 1 bundle with
c1(E) = A. There is another bundle F such that E⊕F is a trivial bundle. Actually,
one may take F to have rank 2 and Chern classes c1(F ) = −A and c2(F ) = A2. Let
Z3 ⊂ (X = M × CP4, Ω) be the symplectic zero loci (of codimension 6) associated
to the (trivial) bundle E ⊕ F . Since the Chern classes of E ⊕ F are all zero, we
have that

bhr
3 (Z3, ΩZ3) = bhr

3 (X, Ω) = 7,

as in Example 3.4.
Now let Z1 ⊂ (X = M × CP4, Ω) be the symplectic zero loci associated to the

bundle E. By Example 3.3, we have that bhr
3 (Z1, ΩZ1) = 9. But, the construction

in [1] is carried out in such a way that Z3 are also symplectic zero loci of Z1 (of
codimension 4), and

bhr
3 (Z3, ΩZ3) < bhr

3 (Z1, ΩZ1).
�

4. Symplectic blow-ups

This section is devoted to the study of the s–Lefschetz property for the symplectic
blow-up C̃Pm of the complex projective space CPm along a symplectic submanifold
M ↪→ CPm.

Let (M, ω) be a compact symplectic manifold of dimension 2n. Without loss of
generality we can assume that the symplectic form ω is integral (by perturbing it
to make it rational and then rescaling), i.e. [ω] ∈ H2(M ; Z). A theorem of Gromov
and Tischler [11, 26] (see also [21, 24]) states that there is a symplectic embedding
i : (M, ω) −→ (CPm, ω0), with m ≥ 2n + 1, where ω0 is the standard Kähler form
on CPm defined by its natural complex structure and the Fubini–Study metric. We
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take the symplectic blow-up C̃Pm of CPm along the embedding i (see [20]). Then
C̃Pm is a simply connected compact symplectic manifold.

Recall that i∗ω0 = ω. We will also denote by ω0 the pull back of ω0 to C̃Pm under
the natural projection C̃Pm → CPm. Let M̃ be the projectivization of the normal
bundle of the embedding M ↪→ CPm. Then π : M̃ −→ M is a locally trivial bundle
with fiber CPm−n−1. We will denote by ν the Thom form of the submanifold
M̃ ⊂ C̃Pm. The class [ν] is called the Thom class of the blow-up. Actually
[ν] = PD[M̃ ] ∈ H2(C̃Pm). The form ν is supported in a small neighborhood of
M̃ ⊂ C̃Pm and the restriction of ν to a fiber of M̃ → M is minus the Fubini-
Study symplectic form on the fiber. Then C̃Pm has a symplectic form Ω whose
cohomology class is [Ω] = [ω0] − ε [ν] for ε > 0 small enough.

Let us consider a closed tubular neighborhood W̃ of M̃ in C̃Pm. By the tubular
neighborhood theorem we know that the normal bundle of M̃ ↪→ C̃Pm contains a
disk subbundle which is diffeomorphic to W̃ . Denote by p : W̃ −→ M̃ the natural
map. There is a map q : Ω∗(M) → Ω∗+2(C̃Pm) given by pull-back by π : M̃ → M ,
followed by extending to a neighborhood of M̃ using p : W̃ → M̃ and then wedging
by ν, i.e. q(α) = p∗π∗(α) ∧ ν. We shall denote q(α) = α ∧ ν for short. Note that

(α ∧ ν) ∧ (β ∧ ν) = (α ∧ β ∧ ν) ∧ ν ,

for α, β ∈ Ω∗(M). This makes notations of the type α∧ β ∧ ν2 unambiguous. Also
remark that [ω0 ∧ ν] = [ω ∧ ν] although ω0 ∧ ν 
= ω ∧ ν as forms.

The cohomology of C̃Pm was studied by McDuff [20]. There she proved that
there is a short exact sequence

(8) 0 −→ H∗(CPm) −→ H∗(C̃Pm) −→ A∗ −→ 0,

where A∗ is a free module over H∗(M) generated by {[ν], [ν2], · · · , [νm−n−1]}.
Before going on to the study of the s–Lefschetz property for C̃Pm, we need

to recall the splitting of the cohomology groups in terms of the primitive classes
proved by Yan [27] for hard Lefschetz symplectic manifolds. His proof also works
for s–Lefschetz symplectic manifolds.

Lemma 4.1. Let (M, ω) be a compact symplectic manifold of dimension 2n satis-
fying the s–Lefschetz property for s ≤ n − 1. Then, there is a splitting

Hk(M) = Pk(M) ⊕ L(Hk−2(M)),

where Pk(M) is given by

Pk(M) = {v ∈ Hk(M) | Ln−k+1(v) = 0},

for k ≤ s. The elements in Pk(M) are called primitive cohomology classes of degree
k.

Proof. First, let us see that Pk(M) ∩ Im L = 0. Take x ∈ Pk(M) with x = L(y),
y ∈ Hk−2(M). Then Ln−k+2(y) = Ln−k+1(x) = 0. By the (k − 2)–Lefschetz
property, y = 0 and hence x = 0.

Now let us consider a ∈ Hk(M) with k ≤ s, and take the element Ln−k+1(a) ∈
H2n−k+2(M). If Ln−k+1(a) is the zero class, then a ∈ Pk(M), and the lemma
is proved. If Ln−k+1(a) is non-zero, then there exists b ∈ Hk−2(M) such that
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Ln−k+1(a) = Ln−k+2(b) since (M, ω) is s–Lefschetz and so the map Ln−k+2 :
Hk−2(M) −→ H2n−k+2(M) is an isomorphism. Hence a − L(b) ∈ Pk(M). But
a = (a − L(b)) + L(b), which lies in Pk(M) ⊕ Im L. �

According Lemma 4.1 we can write

(9) Hk(M) = Pk(M) ⊕ (Pk−2(M) ∪ [ω]) ⊕ · · · ⊕ (Pk−2λ(M) ∪ [ωλ]),

with λ = [k
2 ].

Theorem 4.2. For any s ≤ n−1, if (M, ω) is s–Lefschetz, then there exists ε0 > 0
such that (C̃Pm, Ω = ω0−εν) is (s+2)–Lefschetz, for any ε ∈ (0, ε0]. In particular,
for ε ∈ Q ∩ (0, ε0], we have that [Ωε] is a rational class (and hence a multiple of it
is integral).

Proof. Following the notation stated at the beginning of this section, we must prove
that the map [ω0 − εν]m−k : Hk(C̃Pm) −→ H2m−k(C̃Pm) is an isomorphism for
any k ≤ s + 2 ≤ n + 1. First, using (8) and (9), we note that for k ≤ s + 2 the
cohomology group Hk(C̃Pm) is generated by the classes:⎧⎨⎩ [ω0]

k
2 , if k is even,

[pk−2i−2t ∧ ωt
0 ∧ νi], where [pk−2i−2t] ∈ Pk−2i−2t(M), i > 0, t ≥ 0, i + t ≤ [k

2 ].

Suppose that k is even (the proof is similar when k is odd). We prove that the map
[ω0−εν]m−k is injective by computing each one of the following cohomology classes
in H2m(C̃Pm): [ω0−εν]m−k∪[ω0]

k
2 ∪[ω0]

k
2 , [ω0−εν]m−k∪[pk−2i−2t∧ωt

0∧νi]∪[ω0]
k
2

for i+t ≤ k
2 , and [ω0−εν]m−k∪[pk−2i−2t∧ωt

0∧νi]∪[qk−2j−2s∧ωs
0∧νj ] if i+t, j+s ≤ k

2 ,
where [qk−2j−2s] ∈ Pk−2j−2s(M).

We begin by showing that the class [ω0 − εν]m−k ∪ [ω0]
k
2 ∪ [ω0]

k
2 is non-trivial.

We have

[ω0 − εν]m−k ∪ [ω0]
k
2 ∪ [ω0]

k
2 =

m−k∑
r=0

(
m − k

r

)
(−ε)r[ωm−r

0 ∧ νr]

= [ω0]m +
m−k∑
r=1

(
m − k

r

)
(−ε)r[ωm−r

0 ∧ νr].

In this sum, the terms [ωm−r
0 ∧ νr] are zero for 1 ≤ r ≤ m − n − 1 since M has

dimension 2n and so [ωn+1
0 ∧ ν] = [ωn+1 ∧ ν] = 0. Then

[ω0 − εν]m−k ∪ [ω0]
k
2 ∪ [ω0]

k
2

= [ω0]m +
(

m − k

m − n

)
(−ε)m−n[ωn

0 ∧ νm−n]

+
m−k∑

r=m−n+1

(
m − k

r

)
(−ε)r[ωm−r

0 ∧ νr]

= [ω0]m +
(

m − k

m − n

)
(−ε)m−n[ωn ∧ νm−n] + O(εm−n+1),

(10)

which is a non-zero class (for ε small enough).
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Proceeding in a similar way, let i + t ≤ k
2 , i > 0, t ≥ 0, and [pk−2i−2t] ∈

Pk−2i−2t(M). Then

[ω0 − εν]m−k ∪ [pk−2i−2t ∧ ωt
0 ∧ νi] ∪ [ω0]

k
2

=
m−k∑
r=0

(
m − k

r

)
(−ε)r[pk−2i−2t ∧ ω

t+m− k
2−r

0 ∧ νr+i]

=
(

m − k

m − n − i

)
(−ε)m−n−i[pk−2i−2t ∧ ωn+i+t− k

2 ∧ νm−n]

+ O(εm−n−i+1),

(11)

using that for i < m− n− r, we have that [pk−2i−2t ∧ωt+m− k
2 −r ∧ νr+i] = 0, since

deg(pk−2i−2t ∧ ωt+m− k
2−r) > 2n. Suppose that

(12) x = a[ω0]
k
2 +

∑
i+t≤ k

2 ,i>0

[pk−2i−2t ∧ ωt
0 ∧ νi] ∈ Hk(C̃Pm)

is an element such that [ω0 − εν]m−k ∪x = 0. Then multiplying by [ω0]
k
2 and using

(10) and (11), we get that a = 0. So

(13) x =
∑

i+t≤ k
2 ,i>0

[pk−2i−2t ∧ ωt
0 ∧ νi] .

Now we compute for i + t ≤ k
2 and j + s ≤ k

2 the following product:

[ω0 − εν]m−k ∪ [pk−2i−2t ∧ ωt
0 ∧ νi] ∪ [qk−2j−2s ∧ ωs

0 ∧ νj ]

=
(

m − k

m − n − i − j

)
(−ε)m−n−i−j [pk−2i−2t ∧ qk−2j−2s ∧ ωn−k+i+t+j+s ∧ νm−n]

+ O(εm−n−i−j+1).

(14)

Let us concentrate on the leading term. The duality on Hr(M) defines a duality
on the space Pr(M) of the primitive cohomology classes:

p� : Pr(M) ⊗ Pr(M) −→ R

given by

p�([α], [β]) =
∫

M

α ∧ β ∧ ωn−r,

which is nondegenerate, but

p� : Pr(M) ⊗ Pr+2s(M) −→ R

given by

p�([α], [β]) =
∫

M

α ∧ β ∧ ωn−r−s,

is zero if s 
= 0, since [ω]n−r−s maps Pr+2s(M) to zero. Thus the matrix Ai+t,j+s

associated to p� : Pk−2i−2t(M) ⊗ Pk−2j−2s(M) → R is non-singular if i + t = j + s
and zero if i + t 
= j + s.

Consider the spaces

Pµ :=
⊕

i+t=µ,i>0

Pk−2i−2t(M) [ωt] [νi]
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and
W =

⊕
1≤µ≤ k

2

Pµ ,

so that Hk(C̃Pm) = [ω
k
2
0 ] ⊕ W . There is a bilinear map

p�
1 : W ⊗ W −→ R

given by

p�
1([pk−2i−2t ∧ ωt

0 ∧ νi], [qk−2j−2s ∧ ωs
0 ∧ νj ])

=
∫

C̃P m

pk−2i−2t ∧ qk−2j−2s ∧ ωn−k+i+t+j+s ∧ νm−n .

The matrix Bµ of p�
1|Pµ⊗Pµ

is the block matrix whose block in the place (i, j) with
1 ≤ i, j ≤ µ is the matrix(

m − k

m − n − i − j

)
· (−ε)m−n−i−j · Aµ .

Let d = dimPk−2i−2t(M). The determinant of Bµ is

det(Aµ)µ ·
[
det

(
(−ε)m−n−i−j

(
m − k

m − n − i − j

))
1≤i,j≤µ

]d

= det(Aµ)µ ·

⎡⎢⎢⎣(−ε)(m−n)µ−µ(µ+1)

(
m − k + µ − 1
m − n − µ − 1

)
· · ·

(
m − k

m − n − µ − 1

)
(

m − n − 2
m − n − µ − 1

)
· · ·

(
m − n − µ − 1
m − n − µ − 1

)
⎤⎥⎥⎦

d

,

(15)

which is of the form λµ · εaµ where λµ 
= 0. Here we use that k ≤ s + 2 ≤ n + 1 ⇒
m − k > m − n − µ − 1 and µ ≤ k

2 < m − n ⇒ m − n − µ − 1 ≥ 0.
The determinant of the matrix of p�

1 is the product of detBµ for 1 ≤ µ ≤ k
2 ,

hence of the form λ · εa where λ 
= 0. The matrix associated to the bilinear map
p�
2 : W ⊗ W −→ R given by

p�
2([pk−2i−2t ∧ ωt

0 ∧ νi], [qk−2j−2s ∧ ωs
0 ∧ νj ])

= [ω0 − εν]m−k ∪ [pk−2i−2t ∧ ωt
0 ∧ νi] ∪ [qk−2j−2s ∧ ωs

0 ∧ νj ]

has at each entry an ε–perturbation of the corresponding entry of Bµ, by (14).
Hence its determinant is λ · εa + O(εa+1), and it is non-zero for small ε > 0.
Therefore p�

2 is a pairing and hence (13) is zero. So C̃Pm is (s + 2)–Lefschetz.
To complete the proof, we must note that in the conditions of Theorem 4.2,

there exists ε0 > 0 such that for any ε ∈ (0, ε0] the manifold (C̃P
m

, Ωε = ω0 − εν)
is (s + 2)-Lefschetz. In particular, if [ω0] is an integral 2-cohomology class, then
for rational ε > 0, we have that [Ωε] is a rational class, hence a multiple of it is an
integral class. �

Remark 4.3. Cavalcanti [4, Theorem 4.2] has proved that if M is hard Lefschetz,
then C̃Pm is also hard Lefschetz. This can also be proved with the arguments of
Theorem 4.2 with few modifications as follows.
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We suppose M is hard-Lefschetz and must prove that C̃Pm is k–Lefschetz for
any n + 2 ≤ k ≤ m − 1. In this case, the group Hk(C̃Pm) is generated by [ω0]

k
2

(if k is even) and [pk−2i−2t ∧ ωt
0 ∧ νi], [pk−2i−2t] ∈ Pk−2i−2t(M), 0 < i < m − n,

k − n ≤ t + 2i, t + i ≤ [k
2 ]. The rest of the argument is unchanged except at

two points: use that i < m − n in (11) to get that a = 0 in (12); and use that
2µ ≥ k − n ⇒ m − k ≥ m − n − µ − 1 to get that λµ 
= 0 in (15).

The following result shows that the converse of the previous theorem is also true
if M is parallelizable.

Proposition 4.4. Let (M, ω) be a compact symplectic manifold of dimension 2n,
such that M is parallelizable and (M, ω) is not s–Lefschetz for some s ≥ 1. Then
C̃Pm is not (s + 2)–Lefschetz.

Proof. Since M is parallelizable, its tangent bundle TM is trivial. Denote by N
the normal bunble of M ↪→ CPm. Then the restriction to M of the tangent
bundle of CPm is TCPm|M = TM ⊕ N . The total Chern class of N is given by
c(N) = c(TCPm|M ) = (1 + [ω])m+1, so ci(N) is a multiple of [ω]i.

Taking into account that (M, ω) is not s–Lefschetz, we know that there is a
non-trivial class [ps] ∈ Hs(M) such that [ps] ∈ ker(Hs(M)×Hs(M) −→ R). This
means that for any other element [qs] ∈ Hs(M) we have that [ps ∧ qs ∧ ωn−s] = 0
in H∗(M). In the cohomology ring H∗(C̃Pm) we have the following equality:

[ps ∧ ν ∧ qs ∧ ωl
0 ∧ νm−s−l−1]

=

⎧⎨⎩
0, if m − s − l < m − n,
[ps ∧ qs ∧ ωn−s ∧ νm−n] = 0, if m − s − l = m − n,
[ps ∧ qs ∧ ωl ∧ P (c(N)) ∧ νm−n] = 0, if m − s − l > m − n,

since P (c(N)) is a polynomial in the Chern classes of N , and hence a multiple of
[ω]n−s−l, because the Chern classes of N are multiples of powers of [ω].

Therefore for any j + l ≤ s+2
2 , j > 0, and [qs+2−2j−2l ∧ ωl

0 ∧ νj ] ∈ Hs+2(C̃Pm),
we have

[ω0 − εν]m−s−2 ∪ [ps ∧ ν] ∪ [qs+2−2j−2l ∧ ωl
0 ∧ νj ] = 0.

Also, in the case where s + 2 is even, we have

[ω0 − εν]m−s−2 ∪ [ps ∧ ν] ∪ [ω0]
s+2
2 = 0.

Thus [ps∧ν] ∈ ker(Hs+2(C̃Pm)×Hs+2(C̃Pm) −→ R), which proves that C̃Pm

is not (s + 2)–Lefschetz. �

5. Examples of s-Lefschetz symplectic manifolds

In this section, examples of compact symplectic manifolds which are s–Lefschetz
but not (s + 1)–Lefschetz are constructed for s = 3 and for any even integer s ≥ 2.

First we show the existence of a simply connected compact symplectic manifold
Ms, of high dimension, which is s–Lefschetz but not (s+1)–Lefschetz, for each even
integer value of s ≥ 2. The idea for the construction of Ms is to follow an iterative
procedure starting from an appropriate low-dimensional compact symplectic man-
ifold, take a symplectic embedding of it in a complex projective space CPm and
then consider the symplectic blow-up of CPm along the embedded submanifold in
order to get a simply connected compact symplectic manifold which, according to
Theorem 4.2, will be Lefschetz up to a strictly higher level.
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The starting point to construct Ms will be the Kodaira–Thurston manifold
KT [15, 25]. We begin reviewing it. Consider the Heisenberg group H, that is, the
connected nilpotent Lie group of dimension 3 consisting of matrices of the form

a =

⎛⎝ 1 x z
0 1 y
0 0 1

⎞⎠ ,

where x, y, z ∈ R. A global system of coordinates (x, y, z) for H is given by x(a) = x,
y(a) = y, z(a) = z, and a standard calculation shows that {dx, dy, dz − xdy} is
a basis for the left invariant 1–forms on H. Let Γ be the discrete subgroup of H
consisting of matrices whose entries x, y and z are integer numbers. So the quotient
space Γ\H is compact, and the forms dx, dy, dz − xdy descend to 1–forms α, β, γ
on Γ\H such that α and β are closed, and dγ = −α ∧ β.

The Kodaira–Thurston manifold KT is the product KT = Γ\H × S1 (see [15,
25]). Now, if η is the standard invariant 1–form on S1, then {α, β, γ, η} constitutes
a (global) basis for the 1–forms on KT . Since

dα = dβ = dη = 0, dγ = −α ∧ β,

using Nomizu’s theorem [22] we compute the real cohomology of KT :

H0(KT ) = 〈1〉,
H1(KT ) = 〈[α], [β], [η]〉,
H2(KT ) = 〈[α ∧ γ], [β ∧ γ], [α ∧ η], [β ∧ η]〉,
H3(KT ) = 〈[α ∧ γ ∧ η], [β ∧ γ ∧ η], [α ∧ β ∧ γ]〉,
H4(KT ) = 〈[α ∧ β ∧ γ ∧ η]〉.

Therefore, KT is a symplectic manifold with the symplectic form ω = α ∧ γ +
β ∧ η. It is clear that (KT, ω) is not 1–Lefschetz, which follows directly from
its cohomology or from the general result of Benson and Gordon [2]. Moreover,
Hk

hr(KT, ω) = Hk(KT ) for any k 
= 3, but bhr
3 (KT, ω) = 2 < 3 = b3(KT ). It is

easy to see that the same holds for any other symplectic form on KT .
Denote M0 = KT . By the Gromov–Tischler theorem [11, 26] there exists a

symplectic embedding of (KT, ω) in the complex projective space CPm0 , with m0 =
5, endowed with its standard Kähler form. Let us denote by (M2 = C̃Pm0 , Ω2) the
blow-up of CPm0 along M0. By Theorem 4.2 we can consider Ω2 an integral
form. We may again symplectically embed (M2, Ω2) into CPm2 with m2 = 11
and blow-up CPm2 along M2 to obtain (M4 = C̃Pm2 , Ω4). So in this fashion we
get a simply connected compact symplectic manifold (Ms, Ωs) for any even integer
s ≥ 2 obtained as the symplectic blow-up C̃Pms−2 of CPms−2 along (Ms−2, Ωs−2)
symplectically embedded into CPms−2 , where ms−2 = 2ms−4 + 1. Note that the
dimension of the manifold Ms+2 is equal to 2ms, where

ms = 6 · 2r − 1,

for s = 2r ≥ 0.

Proposition 5.1. For any even integer s ≥ 2, the simply connected compact sym-
plectic manifold Ms = C̃Pms−2 is s–Lefschetz but not (s + 1)–Lefschetz.

Proof. Since M0 = KT is 0–Lefschetz (any symplectic manifold is), we can apply
Theorem 4.2 r times, with 2r = s, to conclude that the manifold Ms is s–Lefschetz.
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To show that Ms is not (s + 1)–Lefschetz we note the following fact. Consider
(M, ω) a compact symplectic manifold and embed symplectically M ↪→ CPm with
m ≥ 2n + 1, where 2n is the dimension of M . As usual we write C̃Pm for the
symplectic blow-up of CPm along M . By (8), the Betti number bi(C̃Pm) is given
by

bi(C̃Pm) = bi−2(M) + bi−4(M) + · · · + b1(M)

if i > 1 is odd. Therefore, b3(M2) = b1(KT ) = 3. For M4, we have b1(M4) =
b3(M4) = 0 and b5(M4) = 3. In general, for any manifold Ms the odd Betti
numbers b2j−1(Ms) vanish for j ≤ r, and bs+1(Ms) = b1(KT ) = 3. This proves
that Ms is not (s + 1)–Lefschetz using Proposition 2.6. �

In the following result we decrease as much as possible the dimension of the
examples constructed in Proposition 5.1 by using symplectic complete intersections
(6).

Proposition 5.2. Let s ≥ 2 be an even integer, and let Ms be the simply con-
nected compact symplectic manifold constructed in Proposition 5.1. Then, there is
a symplectic submanifold Ws ↪→ Ms of dimension 2(s + 2) which is s–Lefschetz but
not (s + 1)–Lefschetz, and every de Rham cohomology class in Hi(Ws) admits a
symplectically harmonic representative for any i 
= s + 3.

Proof. According to Theorem 4.2, we can assume that the symplectic form Ωs of
Ms is an integral form and (Ms, Ωs) is s–Lefschetz. Therefore, we can consider
a symplectic complete intersection Zl ↪→ Ms of codimension 2l, i.e. dimZl =
2(ms−2−l). In particular, if s = 2r, then we take ls = ms−2−s−2 = 6·2r−1−2r−3,
and denote by Ws the corresponding simply connected compact symplectic manifold
Zls of dimension 2(s + 2).

Since 6·2r−2r−3 = 2ms−2−s−1, Poincaré duality implies that b6·2r−2r−3(Ms) =
bs+1(Ms), which equals b1(KT ) = 3 as shown in the proof of Proposition 5.1.

Note that 6 · 2r − 2r− 3 = s + 3 + 2ls. Therefore, bs+3(Ws) = bs+3+2ls(Ms) = 3.
Moreover, Corollary 3.1 implies that bi(Ws) − bhr

i (Ws) = 0 for i > (s + 3), and
bs+3(Ws)− bhr

s+3(Ws) = bs+3+2ls(Ms)− bhr
s+3+2ls

(Ms) ≡ 1 (mod 2), by Proposition
2.6. From Proposition 2.5 we conclude that Ws is s–Lefschetz but not (s + 1)–
Lefschetz. �

Remark 5.3. If we begin with any symplectic 4–manifold N whose first Betti number
is b1(N) = 1 (see [10]), then we obtain a symplectic manifold W ′

s satisfying the
conditions of Proposition 5.2, but with bhr

s+3(W ′
s) = 0.

Corollary 5.4. Let n and s be integer numbers such that s ≥ 2 is even, and
n ≥ s + 2. Then there exists a simply connected compact symplectic manifold of
dimension 2n which is s–Lefschetz but not (s + 1)–Lefschetz.

It is worthy to remark that Proposition 5.2 and Corollary 5.4 also hold in the non-
simply connected setting. For any even integer s ≥ 2, it suffices to take the product
of the symplectic manifold Ws constructed in Proposition 5.2 by a 2–dimensional
torus T2, and then consider a symplectic divisor to reduce the dimension.

One can also address the problem of constructing examples of symplectic mani-
folds Ms which are s–Lefschetz and not (s + 1)–Lefschetz for odd integer numbers
s ≥ 1. We do the cases s = 1 and s = 3. Consider the connected completely
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solvable Lie group G of dimension 6 consisting of matrices of the form

a =

⎛⎜⎜⎜⎜⎜⎜⎝
et 0 xet 0 0 y1

0 e−t 0 xe−t 0 y2

0 0 et 0 0 z1

0 0 0 e−t 0 z2

0 0 0 0 1 t
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where t, x, yi, zi ∈ R (i = 1, 2). A global system of coordinates (t, x, y1, y2, z1, z2)
for G is defined by t(a) = t, x(a) = x, yi(a) = yi, zi(a) = zi, and a standard
calculation shows that a basis for the left invariant 1–forms on G consists of

{dt, dx, e−tdy1 − xe−tdz1, etdy2 − xetdz2, e−tdz1, etdz2}.
Let Γ be a discrete subgroup of G such that the quotient space M = Γ\G is compact.
(Such a subgroup exists; see [7].) Hence the forms dt, dx, e−tdy1−xe−tdz1, etdy2−
xetdz1, e−tdz1, etdz2 descend to 1–forms α, β, γ1, γ2, δ1, δ2 on M satisfying

dα = dβ = 0, dγ1 = −α ∧ γ1 − β ∧ δ1, dγ2 = α ∧ γ2 − β ∧ δ2,

dδ1 = −α ∧ δ1, dδ2 = α ∧ δ2,

and such that {α, β, γ1, γ2, δ1, δ2} is a global basis for the 1–forms on M . Using
Hattori’s theorem [13] we compute the real cohomology of M :

H0(M) = 〈1〉,
H1(M) = 〈[α], [β]〉,
H2(M) = 〈[α ∧ β], [δ1 ∧ δ2], [γ1 ∧ δ2 + γ2 ∧ δ1]〉,
H3(M) = 〈[α ∧ δ1 ∧ δ2], [β ∧ γ1 ∧ γ2], [β ∧ (γ1 ∧ δ2 + γ2 ∧ δ1)],

[α ∧ (γ1 ∧ δ2 + γ2 ∧ δ1)]〉,
H4(M) = 〈[α ∧ β ∧ γ1 ∧ γ2], [α ∧ β ∧ γ1 ∧ δ2], [γ1 ∧ γ2 ∧ δ1 ∧ δ2]〉,
H5(M) = 〈[α ∧ γ1 ∧ γ2 ∧ δ1 ∧ δ2], [β ∧ γ1 ∧ γ2 ∧ δ1 ∧ δ2]〉,
H6(M) = 〈[α ∧ β ∧ γ1 ∧ γ2 ∧ δ1 ∧ δ2]〉.

Consider the symplectic form ω on M given by ω = α∧ β + γ1 ∧ δ2 + γ2 ∧ δ1. Then
[ω]∪ [δ1 ∧ δ2] = 0 in H4(M), which means that M is not 2–Lefschetz. But a simple
computation shows that the cup product by [ω]2 is an isomorphism between H1(M)
and H5(M). Therefore, (M, ω) is 1–Lefschetz, but not 2–Lefschetz. Moreover,
bhr
k (M, ω) = bk(M) for k 
= 4, and bhr

4 (M, ω) = 2 < 3 = b4(M) (compare with
Corollary 2.4). The same holds for any symplectic form on M [14]. Therefore,
(M, ω) is 1–Lefschetz, but not 2–Lefschetz.

Now we deal with the case s = 3. Consider a symplectic embedding of (M1, Ω1) =
(M, ω) in the complex projective space CPm1 , with m1 = 7, endowed with its
standard symplectic form. We define (M3 = C̃Pm1 , Ω3) as the symplectic blow-up
of CPm1 along M1.

Proposition 5.5. The simply connected compact symplectic manifold (M3, Ω3) is
3–Lefschetz but not 4–Lefschetz. Moreover, there is a symplectic submanifold W3 ↪→
M3 of dimension 10 which is 3–Lefschetz but not 4–Lefschetz, and every de Rham
cohomology class in Hi(W3) admits a symplectically harmonic representative for
any i 
= 6.
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Proof. Since (M, ω) is 1–Lefschetz but not 2–Lefschetz, Theorem 4.2 and Proposi-
tion 4.4 imply that M3 = C̃P 7 is 3–Lefschetz and not 4–Lefschetz. As in the proof
of Proposition 5.2, a symplectic complete intersection Zl, l = 2, of M3 provides an
example W3 in dimension 10 which is 3–Lefschetz and not 4–Lefschetz. �

Note also that there exist simply connected compact symplectic manifolds of
dimension 6 which are 1–Lefschetz but not 2–Lefschetz [10, Theorem 7.1].
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