Constraining cosmic rays and magnetic fields in the Perseus galaxy cluster with TeV observations by the MAGIC telescopes



Downloads per month over past year

Antoranz Canales, Pedro and Barrio Uña, Juan Abel and Contreras González, José Luis and Fonseca González, Mª Victoria and López Moya, Marcos and Miranda Pantoja, José Miguel and Nieto, Daniel and Satalecka, Konstanzja and Scapin, Valeria (2012) Constraining cosmic rays and magnetic fields in the Perseus galaxy cluster with TeV observations by the MAGIC telescopes. Astronomy & Astrophysics, 541 . ISSN 0004-6361

[thumbnail of MirandaJM05preprint.pdf]
[thumbnail of MirandaJM05libre.pdf]

Official URL:


Galaxy clusters are being assembled today in the most energetic phase of hierarchical structure formation which manifests itself in powerful shocks that contribute to a substantial energy density of cosmic rays (CRs). Hence, clusters are expected to be luminous gamma-ray emitters since they also act as energy reservoirs for additional CR sources, such as active galactic nuclei and supernova-driven galactic winds. To detect the gamma-ray emission from CR interactions with the ambient cluster gas, we conducted the deepest to date observational campaign targeting a galaxy cluster at very high-energy gamma-rays and observed the Perseus cluster with the MAGIC Cherenkov telescopes for a total of similar to 85 h of effective observing time. This campaign resulted in the detection of the central radio galaxy NGC 1275 at energies E > 100 GeV with a very steep energy spectrum. Here, we restrict our analysis to energies E > 630 GeV and detect no significant gamma-ray excess. This constrains the average CR-to-thermal pressure ratio to be less than or similar to 1-2%, depending on assumptions and the model for CR emission. Comparing these gamma-ray upper limits to models inferred from cosmological cluster simulations that include CRs constrains the maximum CR acceleration efficiency at structure formation shocks to be <50%. Alternatively, this may argue for non-negligible CR transport processes such as CR streaming and diffusion into the outer cluster regions. Finally, we derive lower limits on the magnetic field distribution assuming that the Perseus radio mini-halo is generated by secondary electrons/positrons that are created in hadronic CR interactions: assuming a spectrum of E-2.2 around TeV energies as implied by cluster simulations, we limit the central magnetic field to be > 4-9 mu G, depending on the rate of decline of the magnetic field strength toward larger radii. This range is well below field strengths inferred from Faraday rotation measurements in cool cores. Hence, the hadronic model remains a plausible explanation of the Perseus radio mini-halo.

Item Type:Article
Additional Information:

© ESO. We thank the anonymous referee for valuable comments. We would like to thank Andrey Kravtsov for the useful comments on the paper. We would like to thank the Instituto de Astrof´ısica de Canarias for the excellent working conditions at the Observatorio del Roque de los Muchachos in La Palma. The support of the German BMBF and MPG, the Italian INFN, the Swiss National Fund SNF, and the Spanish MICINN is gratefully acknowledged. This work was also supported by the Marie Curie program, by the CPAN CSD2007-00042 and MultiDark CSD2009-00064 projects of the Spanish ConsoliderIngenio 2010 programme, by grant DO02-353 of the Bulgarian NSF, by grant 127740 of the Academy of Finland, by the YIP of the Helmholtz Gemeinschaft, by the DFG Cluster of Excellence “Origin and Structure of the Universe”, by the DFG Collaborative Research Centers SFB823/C4 and SFB876/C3, and by the Polish MNiSzW grant 745/N-HESS-MAGIC/2010/0. C.P. gratefully acknowledges financial support of the Klaus Tschira Foundation. A.P. acknowledges NSF grant AST 0908480 for support.

Uncontrolled Keywords:Particle hydrodynamics simulations; Diffude radio-emission; Gamma-ray; X-ray; Coma cluster; Dark-matter; Hadronic models; Intracluster medium; Scaling relations; Hess observations.
Subjects:Sciences > Physics > Electricity
Sciences > Physics > Electronics
Sciences > Physics > Nuclear physics
ID Code:21245
Deposited On:13 May 2013 12:10
Last Modified:10 Dec 2018 14:58

Origin of downloads

Repository Staff Only: item control page