¡Nos trasladamos! E-Prints cerrará el 7 de junio.

En las próximas semanas vamos a migrar nuestro repositorio a una nueva plataforma con muchas funcionalidades nuevas. En esta migración las fechas clave del proceso son las siguientes:

Es muy importante que cualquier depósito se realice en E-Prints Complutense antes del 7 de junio. En caso de urgencia para realizar un depósito, se puede comunicar a docta@ucm.es.

Immersed-boundary methods for general finite-difference and finite-volume Navier-Stokes solvers

Impacto

Downloads

Downloads per month over past year

Pinelli, Alfredo and Naqavi, I.Z. and Piomelli, U. and Favier, J. (2010) Immersed-boundary methods for general finite-difference and finite-volume Navier-Stokes solvers. Journal of Computational Physics, 229 (24). pp. 9073-9091. ISSN 0021-9991

[thumbnail of Pinelli07elsevier.pdf] PDF
Restringido a Repository staff only

2MB

Official URL: http://www.sciencedirect.com/science/article/pii/S0021999110004687




Abstract

We present an immersed-boundary algorithm for incompressible flows with complex boundaries, suitable for Cartesian or curvilinear grid system. The key stages of any immersed-boundary technique are the interpolation of a velocity field given on a mesh onto a general boundary (a line in 2D, a surface in 3D), and the spreading of a force field from the immersed boundary to the neighboring mesh points, to enforce the desired boundary conditions on the immersed-boundary points. We propose a technique that uses the Reproducing Kernel Particle Method [W.K. Liu, S. Jun, Y.F. Zhang, Reproducing kernel particle methods, Int. J. Numer. Methods Fluids 20(8) (1995) 1081-1106] for the interpolation and spreading. Unlike other methods presented in the literature, the one proposed here has the property that the integrals of the force field and of its moment on the grid are conserved, independent of the grid topology (uniform or non-uniform, Cartesian or curvilinear). The technique is easy to implement, and is able to maintain the order of the original underlying spatial discretization. Applications to two- and three-dimensional flows in Cartesian and non-Cartesian grid system, with uniform and non-uniform meshes are presented.


Item Type:Article
Uncontrolled Keywords:Incompressible Navier-Stokes equations; Immersed-boundary method; Reproducing Kernel Particle Methods
Subjects:Sciences > Physics
Sciences > Computer science
ID Code:21893
Deposited On:17 Jun 2013 09:16
Last Modified:12 Dec 2018 18:39

Origin of downloads

Repository Staff Only: item control page