Publication:
Long-time tails in lattice gases violating detailed balance

Loading...
Thumbnail Image
Full text at PDC
Publication Date
1995-09
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Using analytic and simulation techniques, we study the long-and intermediate-time behavior of the velocity autocorrelation function in two-dimensional lattice gas automata with stationary states that violate detailed balance. Such models are prototypes of dissipative systems, have stationary states that are very different from Gibbs states, and exhibit long-range spatial correlations. Such static correlations are absent in models with detailed balance symmetry. In some lattice gases with Strong violation of detailed balance, the simulations show negative velocity correlations at intermediate times (cage effect), which, to our knowledge, has never been observed in lattice gases before. A mode coupling calculation is used to analyze the long-time tail, whose amplitude is very different from the mean field prediction. When the above static correlations are taken into account, our theoretical predictions agree very well with the results of computer simulations.
Description
©1995 The American Physical Society. The authors are very grateful to D. Frenkel and M. van der Hoef, who have made their computer codes for simulating the velocity autocorrelation function in lattice gas automata available to us, without which this investigation would not have been possible. R.B. acknowledges support by DGICYT (Spain) under Contract No. PB91-0378 and a grant of the Ministerio de Educacion (Spain). H.J.B. is financially supported by the "Stichting voor Fundamenteel Onderzoek der Materie, " which is sponsored by the "Nederlandse Organisatie voor Wetenschappelijk Onderzoek. " M.H.E. acknowledges financial support from the Offices of International Relations from Complutense and Utrecht University for a visit to Complutense University. J.M. acknowledges support from Kanazawa University, which enabled him to spend a year at Utrecht University.
UCM subjects
Keywords
Citation
[1] U. Frisch, D. d’Humières, B. Hasslacher, P. Lallemand, Y. Pomeau, and J. P. Rivet, Complex Syst. 1, 649 (1987). [2] B. Dubrulle, U. Frisch, M. Hénon, and J. P. Rivet, J. Stat. Phys. 59, 1187 (1990). [3] J. A. Somers and P. C. Rem, in Numerical Methods for the Simulation of Multi Phase and Complex Flow, edited by T. M. M. Verheggen, Lecture Notes in Physics, Vol. 398 (Springer-Verlag, Berlin, 1992), p. 59; D. van Coevorden, M. H. Ernst, R. Brito, and J. A. Somers, J. Stat. Phys. 74, 1085 (1994). [4] M. Hénon, J. Stat. Phys. 68, 353 (1992). [5] H. J. Bussemaker and M. H. Ernst, J. Stat. Phys. 68, 431 (1992). [6] B. Schmittmann and R. K. P. Zia, in Phase Transitions and Critical Phenomena, edited by C. Domb and J. L. Lebowitz (Academic, London, 1995). [7] P. L. Garrido, J. L. Lebovritz, C. Maes, and H. Spohn, Phys. Rev. A 42, 1954 (1990). [8] M. H. Ernst and H. J. Bussemaker, J. Stat. Phys. (to be published). [9] J. R. Dorfman, T. R. Kirkpatrick, and J. Sengers, Annu. Rev. Phys. Chem. 45, 213 (1994). [10] G. Grinstein, D. H. Lee, and S. Sachdev, Phys. Rev. Lett. 64, 1927 (1990). [11] H. J. Bussemaker, M. H. Ernst, and J. W. Dufty, J. Stat. Phys. 78 1521 (1995). [12] B. Boghosian and W. Taylor (unpublished). [13] H. J. Bussemaker, Ph. D. thesis, University of Utrecht, 1995, and unpublished. [14] T. R. Kirkpatrick and M. H. Ernst, Phys. Rev. A 44, 8051 (1991). [15] R. Brito, and M. H. Ernst, Phys. Rev. A 44, 8384 (1991). [16] G. A. van Velzen, R. Brito, and M. H. Ernst, J. Stat. Phys. 70, 811 (1993); R. Brito and G. A. van Velzen, J. Stat. Phys. (to be published). [17] D. Frenkel and M. H. Ernst, Phys. Rev. Lett. 83, 2165 (1989). [18] M. A. van der Hoef and D. Frenkel, Phys. Rev. A 41, 4277 (1990);M. A. van der Hoef and D. Frenkel, Physica D 47, 191 (1991). [19) M. H. Ernst, Physica D 47, 198 (1991). [20] T. Naitoh, M. H. Ernst, and J. W. Dufty, Phys. Rev. A 42, 7187 (1990). [21] D. Rothman and J. M. Keller, J. Stat. Phys. 52, 1119 (1988). [22] C. Appert and S. Zaleski, Phys. Rev. Lett. 64, 1 (1990). [23] F. J. Alexander, I. Edrei, P. L. Garrido, and J. L. Lebowitz, J. Stat. Phys. 68, 497 (1992). [24] H. J. Bussemaker and M. H. Ernst, Physica A 194, 258 (1993). [25] M. Gerits, M. H. Ernst, and D. Frenkel, Phys. Rev. A 48 988 (1993). [26] D. d'Humières and P. Lallemand, Complex Syst. 1, 599 (1987). [27] M. H. Ernst and T. Naitoh, J. Phys. A 24, 2555 (1991). [28] M. H. Ernst, Liquids, Freezing and the Glass Transition, 1989 Les Houches Lectures, Session LI, edited by D. Levesque, J. P. Hansen, and J. Zinn-Justin (Elsevier, Amsterdam, 1991), p. 43. [29) M. H. Ernst, E. Hauge, and J. M. J. van Leeuwen, Phys. Rev. A 4, 2055 (1971). [30] H. J. Bussemaker and M. H. Ernst, Transp. Theory Stat. Phys. 23, 147 (1993). [31] D. H. Rothman and S. Zaleski, Rev. Mod. Phys. 66, 1417 (1994). [32] S. P. Das, H. J. Bussemaker, and M. H. Ernst, Phys. Rev. E 48, 245 (1993). [33] A. Noullez and J. P. Boon, Physica D 47, 212 (1991). [34] P. G. Grosfils, J. P. Boon, R. Brito, and M. H. Ernst, Phys. Rev. E 48, 2655 (1993). [35] M. A. van der Hoef and D. Frenkel, Phys. Rev. Lett. 66, 1591 (1991). [36] J. A. Leegwater and G. Szamel, Phys. Rev. Lett. 67, 408 (1991). [37] M. van der Hoef, Ph. D. thesis, University of Utrecht, 1992 (unpublished).
Collections