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Abstract. We report on our recent work about the description of a meson gas below the chiral phase
transition within the framework of Chiral Perturbation Theory. As an alternative to the standard
treatment, we present a calculation of the quark condensate which combines the virial expansion and
the meson-meson scattering data. We have also calculated the full one-loop elastic pion scattering
amplitude at finite temperature and we have unitarized the amplitude using the Inverse Amplitude
Method in order to reproduce the temperature effects on the mass and width pfahd o
resonances. Our results show a clear increase of the thermalth, as expected from previous
analysis. The results for the are consistent with Chiral Symmetry Restoration. We comment on
the relevance of our results within the context of Relativistic Heavy lon Collisions.

INTRODUCTION AND MOTIVATION

The recent development of the Relativistic Heavy lon Collision (RHIC) program is
one of the main motivations to study hadronic matter under extreme conditions of
temperatureT and density. Here we will consider the meson gas formed when the
plasma created after one such RHIC has expanded and hadronized, being in a state
where the chiral symmetry is restored. There are strong indications that one could
observe the medium effects on such a system. For instance, the dilepton spectrum shows
an anomalous behaviour for invariant masses neaptheass [1]. The flatness of the
spectrum is consistent with a modification of the mass and width opthevhich
have time to decay inside the plasma, so that their spectral function acquires thermal
corrections due to the interaction with the hot and dense hadron gas [2, 3, 4,5, 6, 7, 8, 9].
In such a system, external momenta and temperature are small compared to the chiral
symmetry breaking scalé, ~ 1 GeV. The relevant degrees of freedom are then the
lightest mesons and the interactions among them are best described by a low-energy
QCD effective theory based on chiral symmetry. The most general framework com-
prising the QCD Chiral Symmetry Breaking pattedy (N;) x SUg(N;) — Uy, (N;) is
Chiral Perturbation Theory (ChPT) [10, 11, 12, 13] where any observable can be calcu-
lated as an expansion 5y A, p denoting a meson mass, momenta or the temperature.
Thus, ChPT provides model-independent predictions, just by fixing a few low-energy
constants (LEC). This program has included the calculation of thermodynamic observ-
ables such as the free energy density and the quark condensate, as we will briefly review
below. Throughout this paper, we will neglect finite baryon density effects, as ideally in
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the central rapidity region formed after a RHIC.

Since ChPT is intended to provide a systematic low-energy andli@erturbative
expansion, we do not expect it to reproduce resonances. This is strongly related to
the fact that ChPT only satisfies unitarity in a perturbative fashion. Over the last few
years, there has been a lot of work devoted to enlarge the ChPT applicability range by
using unitarization methods, i.e, imposing exact unitarity requirements, like the Inverse
Amplitude Method (IAM) [14] or approaches based on Lippmann-Schwinger or Bethe-
Salpeter equations [15]. These methods provide a good agreement with the experimental
phase shifts and they are able to generate resonances, lilge dhd theo for the
J(2) chiral symmetry. In addition, they can be extended to include coupled channels,
describing successfully all the meson-meson data and resonanceSin(8)ecase, up
to 1.2 GeV [16, 17].

What we will show below is that only requiring chiral symmetry and unitarity one
can also describe successfully the thermal behaviour opthed ¢ resonances. For
that purpose, one needs first to calculate the thermal pion scattering in ChPT, which
has been done in [18]. We shall discuss the main features of such thermal amplitude
below. Then, by using the IAM extended to finifg one can construct a nonperturbative
thermal unitarized amplitude which, in particular, describes the behaviour of the thermal
p ando [19]. We will present the results for the thermal mass and width opthado
in that approach, as well as for thiedependence of the effectigg,, vertex. The main
implications of our results in the context of RHIC and chiral symmetry restoration will
be also discussed below.

THE MESON GASAND CHIRAL SYMMETRY AT FINITET
WITHIN CHPT

For the reasons explained above, it is important to provide an accurate description
of the low-T meson gas in thermal equilibrium. For instance, the signature of chiral
symmetry restoration ¢ ~ 150-200 MeV should be observed in the thermal evolution
of the order parameter, the quark condensgtg(T) from below the transition point.
As we have just discussed, ChPT provides a model independent description of the
thermodynamic observables, based only on chiral symmetry. The only extra ingredient
is the temperature, which is treated ascap) parameter.

The first calculations of the pion gas within ChPT go back to [20], wHao(T)
and the thermal dependence if(T) were calculated up t&’(T?) (one loop) in the
chiral limit. That result already showed a behaviour compatible with chiral symmetry
restoration. In [21] a thorough analysis up&gT®) was performed, including the free
energy, the quark condensate and an estimate of the thermal effdote kdons and
etas. Thed (T4) corrections tof,(T) have been analyzed in [22] where it has been
shown that beyond’(T?) one has to consider separately the space and time components
of the axial current, so that there are two independé&ht which, in addition, can be
complex. In fact, their imaginary part is proportional to the in-medium pion damping
rate while their real parts are related to the deviations of the pion velocity from the
speed of light. Other analysis of the thermal pion dispersion law can be found in [23, 24].
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The analysis of typical nonequilibrium effects such as explosive pion production after
a RHIC can be also studied within the ChPT context [25]. It should be pointed out
that many of these properties have also been investigated using specific models for low-
energy QCD. The most popular is t8¢4) model, which reproduces a critical behaviour
already in the mean field approach. Apart from introducingsteplicitly, conventional
perturbation theory in th®(4) model breaks down, which has been dealt with at finite

T using different nonperturbative approaches [26, 27].

When calculating thermodynamic quantities such as the pressure or the quark con-
densate from ChPT, the usual approach is to use the Feynman rules of Thermal Field
Theory [28] to the order considered. This is particularly cumbersome in the three fla-
vor case if one wishes to include the full dependence on temperature, quark masses and
J (3) interactions. An alternative [21, 29, 30] is to perform a virial expansion of the
pressure as [31]

ﬁP:ZBi(T)5i+2(Bii(T)§iz+;éBij(T)éiéj) “e 1)
i i j#i

wherei = 7,K,n. This is a dilute gas expansion in the fugacites- exp(—m,/T). The
binary interactions between the different species show up in [21, 29, 30]:

B = glz,fé /m o JEE(ET) 3 @+ )@+ DB, @)

whereK, is the first modified Bessel function aﬁﬂJ g are the elastic scattering— ij

phase shiftat T=0 (chosen so thaé = 0 at thre’s/hold) of a stat§ with isospinl,
angular momenturd and strangenes® What makes the virial expansion useful is that
the T dependence on thermodynamical observables Up+0200— 250 MeV can be
obtained just from th& = 0 phase shifts, which have been calculated for all possible
meson-meson interactions® (3) ChPT to one loop. They can be found for instance in
[17]. Note that for the pressure one could even use the experimental phase shifts directly.
However, the quark condensate is given by the derivative of the pressure with respect to
the quark mass and therefore the analytic dependence &¥'théth the different meson
masses is needed.

For temperatures much below 150 MeV, massive states like kaons and eta are ther-
mally suppressed, typically by the Boltzmann factors(exd, /T) and, in principle,
the suppression is even stronger for the interactions among them and with pions, as
(1) shows. For lowT it is then reasonable to treat those states as free particles, as it
was done in [21]. Moreover, at low the integrals in (2) are dominated by the phase
shifts at threshold. However, for higher temperatures, the effect of massive states be-
comes increasingly important and, furthermore, the dependence of the interactions with
the pion mass can be large so that their contribution to the quark condensate becomes
sizable [30]. When the effect of the strange states is taken into account, there are two
main questions that can be analyzed: on the one hand, the effect on the non-strange con-
densatguu) = (dd) = (gq)/2 (in the isospin limit) of adding another flavor. Since the
number of degrees of freedom increases, so it does the entropy and one expects that the
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FIGURE 1. The thermal evolution of th&g) and(ss) condensates in ChPT

collective state is closer to "disorder". This would imply a decrease of the critical tem-
perature, as it is indeed observed in lattice calculations [32], although with gluons and
massless quarks. On the other hand, one can study the thermal evolution of the strange
condensatess). Sincems > m, 4, one expects that the thermal evolution fss)(T)
is slower than for the non-strange condensate. Note that the quark masses play a simi-
lar role as external magnetic fields in ferromagnets, so that increasing the external field
means that it takes more thermal energy to restore the symmetry. Let us remark that, in
contrast to the lattice, the physical masses are easily incorporated in our approach.

We report here on the virial expansion calculatiof®ih(3) ChPT that has been done
in [30]. The main results for the quark condensates are summarized in Figure 1. First,
it should be pointed out that the curves are plotted at most up to the point where the
condensates vanish. The ChPT condensates do not vanish above those "critical”" values,
since they have been obtained from a perturbative series in the temperature. In fact, the
results should be trusted only in the region showed in the graphs, as explained above. The
thermal evolution ofqq)(T) is shown in different approximations, namely, considering
only pions inSUJ (2) or J(3) (their tiny difference comes from th&(p*) phase shifts),
adding free kaons and etas [21] and, finally, considering theSuil[l3) interactions
[30]. Note also that these interactions (basically ar#y andzn are important at these
temperatures) yield a larger effect than naively expected. The reason is that they depend
strongly onm,, which is more sensitive ton, 4 thanm, or m,,. Taking into account
the numerical values of the LEC’s with their errors, one gets a reduction of the melting
temperature of {992 _ T E) = 21+14 MeV, in remarkable agreement with the
chiral limit lattice calculations [32], taking into account that we have used the actual
meson masses. In addition, we estim§9 () = 211+1% MeV [30]. The second
effect, is also clearly seen in Figure 1: The thermal evolution of the strange condensate
from the broken phase is much slower than the non-strange one. From Figure 1, we see
that there is still about 80 % left fgss)(T)/(ss)(0) when{qa)(T)/(qa)(0) has already
melted. Finally, one may wonder about the effect of calculating the integrals in (2) with
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ChPT, whose applicability does not extend to infinity. Indeed, when (2) is evaluated
[30] with the phase shifts unitarized with the coupled channel IAM [17] , which have a
much larger applicability range, the numerical results only change very slightly. Thus,
the main conclusions remain the same, since, as we have already commented, the main
contribution to the integrals comes from the low-energy region and the IAM agrees with
ChPT at low energy, improving only the high energy behavior.

PION SCATTERING AT T # O0IN ONE LOOP CHPT

If the pion gas is dilute enough, i.e., at very low temperatures, it is reasonable to
assume that the only dependence of pion scatteringiwitiin be accounted for through

the Bose-Einstein distribution functions and one can ignoreTtiiependence of the
scattering amplitudes. However, that dependence could be important in several contexts.
For instance, it has been suggested that an enhancement of pion scattering in the scalar
channel near threshold could be an indication of chiral symmetry restoration [27]. In
addition, a previous calculation [9, 33] of thermat scattering in the Nambu-Jona-
Lasinio model, shows a singular behaviour of the scattering lengths at some critical
temperature, which may be related to a Mott transition. Furthermore, if one wishes to
extend to finiteT the fruitful unitarization program in ChPT to describe resonances,
the full calculation of thern scattering amplitude to one loop and the extension of
perturbative unitarity are essential ingredients.

For the above reasons, it is important to provide a model-independent description of
pion scattering for temperatur&swell below the chiral scald . This can be achieved
in ChPT. The calculation of the thermal scattering lengths in ChPT to one loop has been
done in [34] whereas the calculation of the full thermal amplitude in one loop ChPT has
been recently carried out [18]. We will report here the main results and features of that
work.

There are two formal aspects regarding the calculation of the scattering amplitude at
finite T that are worth pointing out. The first one is that we are considering the thermal
amplitude defined by taking = 0 asymptotic pion sates, tiedependence coming from
the four-point function, calculated using the Feynman rules of Thermal Field Theory
in the imaginary-time formalism [28]. Then, one can perform an analytic continuation
from discrete frequencies, = 2znT to real energie& asiw, — E +ie. Such analytic
continuation corresponds to the retarded four-point function in the so called real-time
formalism [35]. The retarded functions have a causal and analytic structure [36] suitable
to extend perturbative unitarity at = 0. The same definition of thermal amplitude has
been used in [9, 34].

The second point is that the loss of Lorentz covariance inherent to the thermal formal-
ism (due to the choice of the thermal bath rest frame) means that any two-body scattering
amplitude with four-momentk, k, — k;k, will depend separately on the variab8s
18], To, [T], Uy and |0, whereS =k, +k,, T = k; —k; andU = k; —k,. At T =0,
the amplitude depends only on the Mandelstam variablesS?,t = T2, u = U? and

any nr scattering amplitude can be related to thattofr~ — n%z°, calledA(s,t,u),
by isospin and crossing transformations. At~ 0 and since the temperature does not
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FIGURE 2. One loop diagrams contributing tor scattering

modify the interaction vertices, the crossing symmetry still holds, but now in terms of
S, T andU. Therefore, anyrrr thermal amplitude can be written in terms of the thermal
A(S,T,U;B). The loop diagrams are the same asToet 0 and are given in Figure 2.

The final result for the thermal amplitude can be written as:

AS.T,U;B) = Ay(ST,U) + AP (S T,U) + AN (S, T.U; B) + A7 (S, T,U; B), (3)

whereA, is tree level contribution coming from th€(p?) lagrangian (the nonlinear
sigma model) Whi|e°\§0| contains both the tree levet(p?*) contributions plus poly-
nomials coming from the renormalization of the loop integrals. B@gmndAfl’O' are

temperature independent. Tlﬁé”i term represents those contributions from diagrams
a,b,c in Figure 2. They yield the correct analytic structure and will ensure perturbative
unitarity in all channels. Finally, the contributim:fd accounts for tadpoles like those

in diagrams d,e in Figure 2 plus terms coming from diagrams a,b,c proportional to the
tadpole integral.

The detailed results for the different contributions above can be found in [18] and we
do not give them here for brevity. As a first check of consistency, we recovérth®™
limit of [11]. Furthermore, when the thermal amplitude is projected into partial waves
a,; of definite isospin and angular momentudh(defined in the center of mass frame
where the pions are at rest with the thermal bath) we also agree with the results given in
[34] for the scattering lengths.

Another important check of consistency, which will be crucial for our analysis in the
next section, concerns the imaginary part of the partial waves and perturbative unitarity.
At T = 0, unitarity constraints the partial waves, for 4m2 and below other inelastic
thresholds, to satisfy

Ima(s) = o(s)[a(s)| 4)
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FIGURE 3. Interpretation of thermal bath contributions to the pion scattering phase space. In the
process A, the medium enhances the two-pion production, while process B represents the absorption
of the initial pions by the thermal bath.

whereo (s) = y/1—4m2 /sis the two-pion phase space, whereas the ChPT series only
satisfies unitarity perturbatively, i.e.,

Imay,(s) =0, Ima4(s):c7(s)|a2(s)|2, (5)

Itis possible to generalize the relation (5) to the case of any one-loop elastic scattering
amplitude at finitelT . The derivation is given in [18] and follows closely the analysis in
[37] of the discontinuity in the self-energy of a particle decaying in the thermal bath.
The result for the thermal perturbative unitarity relation is:

Ima,(s) =0,  Imay(sp)=or(Sy) |a(s)°, > 2my, (6)
where )
o;(E) = 6 (E?) 1+—exp([3\E\/2)—1 (7)

and it has been assumed that only states are available in the thermal bath. Thus,

is nothing but the thermal phase space, whose origin can be physically interpreted by
writing 1+ 2ng(E/2) = [1+ nB(E/Z)]2 — n3(E/2) whereng(x) = (exp(x/T) — )t

is the Bose-Einstein distribution function. Written in this way, the first term represents
the enhancement of phase space due to the presence of pions in the medium, while the
second term accounts for the absorption of the two initial pions by pions in the bath.
This is schematically depicted in Figure 3. We have checked explicitly that the relation
(6) holds for our thermat  scattering amplitude. Moreover, the partial waves & 0
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FIGURE 4. Temperature evolution of the phase shifg for 1J = 11,00,20.

can be analytically continued to tleecomplex plane [19] and they display the same
analytic structure as th€ = 0 one, i.e, they have a right unitarity cut in the real axis
aboves > 4m,2r (the discontinuity across the cut is given by (6)) and a left ons 0.

We remark that our results remain valid when the density of states with more than two
pions is small. This is equivalent to neglecting higher powerspfind is therefore
similar to the dilute gas approach. For small energies and temperatures, that is, strictly
within ChPT, the dilute gas approach is consistent, as we have also seen in the previous
section. When the range of energies is extended, as we will do in the next section, one
should bear in mind that the range Bfwhere our approach is valid is such that the
Bose-Einstein factors still remain small.

Finally, we have plotted the thermal phase shifts in Figure 4. These results deserve
some comments. First, we observe that the absolute value of the phase shifts in all
channels increases with, while their sign (i.e, the attractive or repulsive nature of
each channel) is preserved. Recall that the phase shifts are related to the real part of
the amplitude as; ~ o7 (1/3) [a,(S) + Rea,(s, B)]. The dominant contribution to the
phase shifts thermal enhancement is given by the thermal phase spaces{aaidile
theT-dependence of the real part of the amplitude is rather weak &I Idvparticular,
we do not observe any significant thermal enhancement for the real payg, afhich
would be interpreted as chiral symmetry restoration [27]. However, it must be stressed
that we are just considering tiperturbative amplitude, valid only for lowT . In the next
section, we will consider a nonperturbative extension of the amplitude, which does show
a behaviour compatible with chiral symmetry restoration in the 00 channel.

Another important comment regarding our results shown in Figure 4 concerns the 11
channel, i.e, the channel. Recall that, following the hypothesis of resonance saturation,
increasingd,,; is equivalent to increasing the ratig, f,‘,‘/Mg’ [11, 38]. Therefore, our
results are consistent with a thermal increase of the rho width coming mostly from
thermal phase space and an almost constant rho mass, at veily [8w4, 8]. This
behaviour will be confirmed by our analysis in the next section, where we will find also
important corrections at higher temperatures.
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THE THERMAL p AND o

The purpose of this section is to show that only from chiral symmetry and unitarity one
finds a thermal evolution of the masses and widths opthado at rest consistent with
previous analysis and with the dilepton spectrum observed in RHIC. Unlike the models
where the resonances are included as explicit degrees of freedom, we will start from the
model-independent pion scattering amplitude in one loop ChPT calculated in the previ-
ous section and, imposing exact unitarity, we will construct a nonperturbative amplitude
whose poles in the second Riemann sheet in the 00 and 11 channels correspotad to the
andp respectively.

The exact unitarity relation (4) implies that any partial wave satisfied /(Rea™* —
io) on the real axis below inelastic thresholds. A unitarization method is just one way
of approximating Ra—1. The IAM uses the one-loop ChPT and thus ensures that exact
unitarity is exactly satisfied and, at the same time, the low-energy predictions of ChPT
are preserved. The IAM unitarized amplitude for one channel ré@dtfs= a3/ (a, — a,)
[14] and coincides formally with the [1,1] Padé approximant in thé expansion.

We have already sketched in the introduction the virtues of the IAM formufa=a0
for the description of resonances and the data for higher energids 40, we have
seen in the previous section that, perturbatively in ChPT and for a dilute gas, the partial
waves satisfy thermal unitarity (6)-(7). Therefore, following the same steps as for the
T = 0 case and motivated by the success of the IAM approach, we will consider the
unitarized IAM thermal amplitude:

2
1AM [ a3(s)
aMsT)= —27 (8)
ST = a9 -asT)
which satisfies the exact elastic unitarity condition
2
Ima™™(sT) = o (s) ‘a'AM(s;T)‘ : 9)

The first hint that (8) provides a proper description of thermal resonances comes from
the following simple argument. The behaviour of the 11 partial wave in the real axis near
s= M2, thep mass squared, can be described by a Breit-Wigner parametrization (valid
for narrow resonancds; < My;):

Rr(s)
BW (. _ T
ST = oMz iy (10)

whereR; (s) can be related to therr effective vertex (see below). Now, compare (8)
with (10) neass= M2. First, one gets Re, (M%) = a,(M#%), which defines the resonance
mass and, second, from the unitarity relation (9), we Hamel; = —R; (M2) oy (M2).
Therefore, if the thermal corrections R} and toM; were much smaller than those to
I't (Ry ~ Ry andM; ~ M) we would simply get

Iy =T [1+2ng (Mg/2)] (11)
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which is the behaviour expected at very IGwfor a p at rest [4, 3, 8] that we had
already anticipated in the previous section. As discussed in [37, 4] and also in the
previous section, this result accounts for the difference between the directmeecayr

and the inverse ongr — p which is allowed in the thermal bath and is responsible
for the dilepton production. Note that in order to derive (11) we have neglected the
T-dependence in Rg (S T). Therefore, by using the complete result for the thermal
one-loop amplitude discussed in the previous section, we will be able to find, for
higher temperatures, tie dependence oM, R;, possible deviations from the low-

T behaviour (11), and even more importantly, the thermal evolution of botp trelc

poles in the complex plane, which is the consistent way to generate resonances within
ChPT. Recall that a Breit-Wigner description is not valid for theAccording to our
previous discussion, the upper limitThto which our approach is valid will be dictated

by the conditiomg(M/2,T) < 1 whereM is the mass of the resonance descrilear(

o). This gives roughiyT < 300 MeV for thep andT < 180 MeV for theo.

In the above discussion, it is crucial to obtain the analytic continuation of the thermal
amplitude to the complexplane. The details can be found in [19]. The result shows
the same right and left cuts structure asThe 0 amplitude, the discontinuities across
the cuts beind@ -dependent. Once such analytic continuation has been obtained, it can
be continued to the second Riemann sheet, using (Q'ésT) = a"M(s;T)/[1 -
2ior(9)aM(s,T)).

Let us first show the results fd¥,; for different temperatures, depicted in Figure 5.
The U (2) LEC (see [11] for their definition) we have used &fe= —0.3,1, = 5.6,

T3 =34 andlﬁ4 = 4.3 and are obtained by fitting thle= 0 scattering data, which yields

M, = 770 MeV andl'; = 159 MeV. We see clearly the broadening of theas T
increases. This is confirmed by the evolution of the thermal poles, which is shown in
Figure 6. Thep width increases witfl while thep mass decreases slightly. Thgpole
deserves some comments. We see that for Tothe ¢ width increases and its mass
decreases slightly, following a similar behaviour as phé.e, mostly dictated by the
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FIGURE 6. Evolution of thec andp poles with the temperature.

thermal space factas;. However, forT > 125 MeV, M, decreases more rapidly and
I'; starts to decrease. This behaviour has an interesting explanation in terms of chiral
symmetry restoration. On the one hand, sinceTthiependence oh,(T) is rather weak
up toT ~ 200 MeV [24, 27], the decrease M(T) points towardsM, — m, and
that decreasing is stronger @sincreases, unlike thp mass. On the other hand, as
T increases anl; approachesr®,; from above, both the direet — 27 and inverse
2w — o decays become kinematically disallowed, so thgtis reduced. At lowT,
the decrease of the mass is much weaker and the phase space contribution dominates,
makingI', grow. Similar results and discussion for txecan be found in [27, 39].

Finally, in Figure 7 we have collected our results for theFirst, we clearly observe
a significant deviation (fof > 100 MeV) between the full result (obtained either from
the pole position in Figure 6 or from the phase shift in Figure 5) and the naive thermal
phase space prediction (11), stressing the importance of havingladielbendent ChPT
description ofzz scattering. Moreover, althougil, changes little, consistently with
Vector Meson Dominance [2, 4], our results show a sizable slight decrease pf the
mass forT > 150 MeV, which seems to be favored by phenomenological analysis of
RHIC dilepton data [6, 8]. In Figure 7 we have also plotted the effegiive vertex,
defined fromR; in (10) asR; = g% (4m& — M2) /48r, from the VMD prr coupling
[4, 7] with a thermalp (g, ~ 6.2). At low temperaturegr <9, (950/9p ~ 0.9991) in
agreement with the chiral analysis in [7]. For higher temperatgfegrows, although
the thermal corrections are much smaller than those at finite baryon density [40].
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CONCLUSIONS

We have reviewed some basic aspects about the ChPT description of the meson gas
formed after a Relativistic Heavy ion Collision. In particular, we have shown that one
can combine the virial expansion with ChPT in order to obtain the thermal evolution

of the quark condensate below the chiral phase transition in the dilute gas regime. That
approach allows to use directly all the available information on meson-meson scattering
for three light flavors in ChPT. Contrary to lattice studies, in this approach physical
masses are easily accounted for. The main effects of considering the strange sector in the
condensate are, first, that the strange condensate melts much more slowly than the non-
strange one and, second, that the melting temperature for the non-strange condensate is
sizably smaller with three flavors than with two, and that, surprisinglyrtendrn
interactions provide a largest contribution to this effect than free kaons or etas.

We have also shown the results of a recent calculation of thecattering amplitude
at finite T in one loop ChPT. The partial waves satisfy an extended version of perturba-
tive unitarity, where the only change with respect toThe 0 case is that the phase space
is thermally enhanced by the presence of pions in the thermal bath. Thus, the imaginary
part of the thermal amplitude has a neat physical interpretation in terms of absorption
and induced emission of pion pairs in the thermal bath. The thermal phase shifts are also
enhanced withT, keeping their attractive or repulsive nature, mainly dominated by the
phase space factor.

The thermal pion scattering amplitude can be unitarized using the 1AM, following
similar steps as fof = 0. The unitarized partial waves can then be analytically contin-
ued to the complex energy plane and their poles if tael = 1 andl = J = 0 channels
correspond to the and theo. This approach provides a description of the thermal ef-
fects for ap ando at rest, only from chiral symmetry and unitarity. We have found that
', increases significantly witli. For low T, M,, and the effective verteg,, . remain
almost constant, which is consistent with neglectingThéependence in the real part
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of the amplitudes and considering only the contribution from the thermal phase space.
However, for highefT, the full T-dependence in the amplitude has to be taken into ac-
count. Thus, foil > 100 MeV,I", acquires significant corrections from the pure thermal
space approximation amg} ;. increases, while fof >150 MeV,M,, shows a sizable de-
creasing behaviour. As for thepole, although its interpretation as a resonance is much
less clear than thp, the thermal behaviour of bot, andT';, as obtained from its
associated pole, can be understood from chiral symmetry restoration.

Our results agree with several theoretical analysis and are consistent with phenomeno-
logical studies of RHIC dilepton data. We have only used chiral symmetry and unitarity
as guiding principles, without including the resonances as explicit degrees of freedom.
It would be interesting to apply our chiral unitary approach to the production of dilep-
tons from thermak annihilation near thg energy, in order to be able to provide more
accurate predictions about the observed dilepton spectrum in RHIC. This is just but one
of the possible directions that we will pursue in the near future.
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