Publication:
XANES and EXAFS study of the local order in nanocrystalline yttria-stabilized zirconia

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2013
Authors
Durá, O. J.
Boada, R.
López de la Torre, M.A.
Aquilanti, G.
Chaboy, J.
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The local order around Zr and Y atoms of nanocrystalline yttria-stabilized zirconia (YSZ) powders with different grain sizes has been investigated by x-ray absorption spectroscopies. The samples were prepared by means of mechanical alloying with or without subsequent sintering treatment and also by milling commercial YSZ. Our study is motivated by the interest in the electrical properties of grain boundaries and the controversy about the level of disorder in the intergrain regions in nanocrystalline YSZ. The x-ray absorption near edge structure (XANES) analysis indicates that the local order of all the sintered samples is independent of the grain size. This is confirmed by the analysis of the extended x-ray absorption fine structure, which points out also that, in contrast to that found in sintered samples, the local order around the cation in the samples milled without further sintering treatment extends only to the first coordination shell. Finally, the results of ab initio Zr K-edge XANES calculations lead us to conclude that the observed changes of the shape of the white line are not related to a phase transformation but reflects the short-range order present in the as-milled samples.
Description
Keywords
Citation
T. H. Etsell and S. N. Flengas, Chem. Rev. 70, 339 (1970). B. A. Boukamp, Nature Mater. 2, 294 (2003). Z. Shao and S. M. Haile, Nature (London) 431, 170 (2004). J. Maier, Solid State Ionics 175, 7 (2004). H. L. Tuller, Solid State Ionics 131, 143 (2000). A. Rivera, J. Santamaria, and C. Leon, Appl. Phys. Lett. 78, 610 (2001). J. Garcia-Barriocanal, A. Rivera-Calzada, M. Varela, Z. Sefrioui, E. Iborra, C. Leon, S. J. Pennycook, and J. Santamaria, Science 321, 676 (2008). S. J. Litzelman, J. L. Hertz, W. Jung, and H. Tuller, Fuel Cells 8, 294 (2008). A. Rivera-Calzada et al., Adv. Mater. 23, 526 (2011). I. Kosacki, T. Suzuki, V. Petrovsky, and H. U. Anderson, Solid State Ionics 136, 1225 (2000). P. Mondal, A. Klein, W. Jaegermann, and H. Hahn, Solid State Ionics 136, 1225 (1999). O. J. Dura, M. A. López de la Torre, L. Vázquez, J. Chaboy, R. Boada, A. Rivera-Calzada, J. Santamaria, and C. Leon, Phys. Rev. B 81, 184301 (2010). O. J. Durá andM.A. L´opez de la Torre, J. Phys. D: Appl. Phys. 41, 045408 (2008). A. D. Cicco, G. Aquilanti, M. Minicucci, E. Principi, N. Novello, A. Cognigni, and L. Olivi, J. Phys.: Conf. Ser. 190, 012043 (2009). D. E. Sayers and B. A. Bunker, X-Ray Absorption (Wiley, New York, 1988), Chap. 6. B. Ravel and M. Newville, J. Synch. Rad. 12, 537 (2005). P. H. Citrin, P. Eisenberger, and B. M. Kincaid, Phys. Rev. Lett. 36, 1346 (1976). M. L. Sanjuán, C. Guglieri, S. D´ıaz-Moreno, G. Aquilanti, A. F. Fuentes, L. Olivi, and J. Chaboy, Phys. Rev. B 84, 104207 (2011). K. V. Klementiev, J. Phys. D: Appl. Phys. 34, 209 (2001). C. R. Natoli and M. Benfatto, (unpublished). C. R. Natoli and M. Benfatto, J. Phys. (Paris) Colloq. 47, C8 (1986). M. Benfatto and S.D. Longa, J. Synchrotron Radiat. 8, 1087 (2001). J. Chaboy and S. Quartieri, Phys. Rev. B 52, 6349 (1995). J. Chaboy, J. Synchr. Rad. 16, 533 (2009). J. Chaboy, A.Muñoz-Páez, F. Carrera, P.Merkling, and E. Sánchez Marcos, Phys. Rev. B 71, 134208 (2005). 26M. O. Krause and J. H. Oliver, J. Phys. Chem. Ref. Data 8, 329 (1979). A.V. Chadwick, M. J. Pooley, K. E. Rammutla, S. L. P. Savin, and A. Rougier, J. Phys.: Condens. Matter 15, 431 (2003). L. M. Acuña, D. G. Lamas, R. O. Fuentes, I. O. Fábregas, M. C. A. Fantini, A. F. Craievich, and R. J. Prado, J. Appl. Crystallogr. 43, 227 (2010). P. Li, I.-Wei Chen, and J. E. Penner-Hahn, Phys. Rev. B 48, 10074 (1993). P. Li, I.-Wei Chen, and J. E. Penner-Hahn, Phys. Rev. B 48, 10063 (1993). D. Michel, E. Gaffet, and P. Berthet, Nanostruct. Mater. 6, 667 (1995). E. A. Stern, R.W. Siegel,M.Newville, P.G. Sanders, and D. Haskel, Phys. Rev. Lett. 75, 3874 (1995). S. H. Baker, M. Roy, S. J. Gurman, and C. Binns, J. Phys.: Condens. Matter 21, 183002 (2009). P. D. Cluskey, R. J. Newport, R. E. Benfield, S. J. Gurman, and G. Schmid, Z. Phys. D 26, S8 (1993). A. I. Frenkel, C. W. Hills, and R. G. Nuzzo, J. Phys. Chem. B 105, 12689 (2001). Z.Qi, C. Shi, Y. Wei, Z. Wang, T. Liu, T.Hu, Z. Zhao, and F. Li, J. Phys.: Condens. Matter 13, 11503 (2001). 37G. E. Rush, A. V. Chadwick, I. Kosacki, and H. U. Anderson, J. Phys. Chem. B 104, 9597 (2000). 38In the case of monoclinic ZrO2 we have considered the average Zr-Zr distance reported by Li et al. in Ref. 25. 39W. Yuren, L. Kunquan, W. Dazhi, W. Zhonghua, and F. Zhengzhi, J. Phys.: Condens. Matter 6, 633 (1994). 40M. Gateshki, V. Petkov, G. Williams, S. K. Pradhan, and Y. Ren, Phys. Rev. B 71, 224107 (2005). 41S. Díaz-Moreno, A. Muñoz-Páez, and J. Chaboy, J. Phys. Chem. A 104, 1278 (2000).
Collections