### Impacto

### Downloads

Downloads per month over past year

Lozano Imízcoz, María Teresa and Montesinos Amilibia, José María
(1997)
*Geodesic flows on hyperbolic orbifolds, and universal orbifolds.*
Pacific Journal of Mathematics, 177
(1).
pp. 109-147.
ISSN 0030-8730

Preview |
PDF
472kB |

Official URL: http://msp.org/pjm/1997/177-1/pjm-v177-n1-p08-p.pdf

## Abstract

The authors discuss a class of flows on 3-manifolds closely related to Anosov flows, which they call singular Anosov flows. These are flows which are Anosov outside of a finite number of periodic "singular orbits'', such that each singular orbit has a Poincaré section on which the first return map has an "n-pronged singularity'' for some n≥1, n≠2. If only 1-pronged singularities occur the flow is called V-Anosov; the authors observe, for example, that the geodesic flow of a compact, hyperbolic 2-orbifold is V-Anosov.

The main theorem is that every closed 3-manifold has a singular Anosov flow. The theorem is proved by constructing a certain link L in the 3-sphere such that L is a universal branching link, so every closed 3-manifold M is a branched cover of the 3-sphere branched over L, and L is the set of singular orbits of some V-Anosov flow on S3, so the lifted flow is a singular Anosov flow on M.

In the literature, a singular Anosov flow whose n-pronged singularities always satisfy n≥3 is called pseudo-Anosov. The main theorem should be contrasted with the fact that an Anosov or pseudo-Anosov flow can only occur on an aspherical 3-manifold—an irreducible 3-manifold with infinite fundamental group. The literature contains many constructions of Anosov and pseudo-Anosov flows, but it remains unknown exactly which aspherical 3-manifolds support such flows

Item Type: | Article |
---|---|

Uncontrolled Keywords: | hyperbolic 2-orbifolds; branched coverings; singular Anosov flows |

Subjects: | Sciences > Mathematics > Algebraic geometry |

ID Code: | 22212 |

Deposited On: | 05 Jul 2013 15:20 |

Last Modified: | 12 Dec 2018 15:13 |

### Origin of downloads

Repository Staff Only: item control page