### Impacto

### Downloads

Downloads per month over past year

Campoamor Stursberg, Otto Ruttwig
(2008)
*A note on invariant operators of the Weyl algebra (Russian).*
Matematicheskiĭ Zhurnal. Mathematical Journal , 8
(3(29)).
pp. 46-51.
ISSN 1682-0525

## Abstract

Let L be a finite-dimensional complex Lie algebra with a basis X1,…,Xn and L∗ the dual space with a dual basis x1,…,xn. Suppose that [Xi,Xj]=∑kckijXk. Then there exists a (co)representation

Xi↦∑k,jckijxk∂∂xj

of L in the space of analytic functions on L∗. A function F is invariant if Xi∘F(x1,…,xn)=∑k,jckijxk∂∂xjF(x1,…,xn).

In the case of a pseudo-orthogonal algebra Iso(p,q) the author finds a maximal algebraically independent system of invariants C1,…,Cm consisting of Casimir operators where m=[p+q−12]. It is shown that invariants of the Weyl algebra W(p,q) have the form IJ−1, where I and J are invariants for Iso(p,q).

Item Type: | Article |
---|---|

Additional Information: | Escrito en ruso |

Uncontrolled Keywords: | Coadjoint orbits; nilpotent varieties |

Subjects: | Sciences > Mathematics > Algebra |

ID Code: | 22226 |

Deposited On: | 05 Jul 2013 16:47 |

Last Modified: | 12 Dec 2018 15:13 |

### Origin of downloads

Repository Staff Only: item control page