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Solutions of (1.1) are known to develop singularities in �nite time, regardless ofthe smoothness of their initial and boundary conditions. For spatially homogeneous(i.e., space independent) solutions, this is readily seen by integrating the �rst orderPDE obtained by dropping the di�usion term uxx in (1.1). In the case of generalsolutions, it is interesting to understand the role of di�usion in the onset and char-acter of singularities. We will say that a nonnegative solution u(x; t) of (1.1) blowsup at a time T < +1 if limt"T sup (sup u(x; t)) = +1 :Assume that u(x; t) blows up at t = T . We then say that x0 is a blow-up point ofu if there exist sequences fxng; ftng, such that limn!1 xn = x0; limn!1 tn = T , andlimn!1 u(xn; tn) = +1 :The set of blow-up points of u is usually referred to as the blow-up set. su�-cient conditions for blow up have been extensively discussed in the literature (cf.[Fu],[Le1],[AW],[W],[L],[Be],. . . ). Furthermore, the structure of the blow-up set,and the asymptotic behaviour of solutions near blow-up points have received consid-erable interest (cf [GP2],[GK1],[GK2],[FM],[CF],[BBE],[CM],[FK],. . .). These areprecisely the questions we want to discuss upon herein. In doing so, we shall followthe approach adopted in [HV1], [HV2], [HV3]. The reader is referred to these papersfor additional details.Consider �rst the question of the asymptotics near blow-up, and for de�niteness,let us consider solutions of the Cauchy problemut = uxx + f(u) ; x 2 R; t > 0; f as in (1.1);(1.2a) u(x; 0) = u0(x) ; u0 continuous, nonnegative and bounded:(1.2b)Assume that u(x; t) blows up in a �nite time (in view of the results in [Fu],[AW],. . .this is certainly the case if u0(x) 6� 0 and f(u) = eu or f(u = up with 1 < p � 3, orif u0(x) is large enough when p > 3 in this last case). Suppose also that x = 0 is ablow up point for u. Then a basic asymptotic result states that(1.3a) if f(u) = up (p > 1) ; limt"T (T � t) 1p�1 u(y(T � t)1=2; t) = (p� 1)� 1p�1uniformly on sets jy j� C with C > 0 ;(1.3b) if f(u) = eu ; limt"T (u(y(T � t)1=2; t) + log(T � t)) = 0 ;uniformly on sets jy j� C with C > 0 :See [GP2] and [GK1],[GK3] where higher-dimensional versions of (1.2a) are also con-sidered, and [BBE]. Roughly speaking, (1.3) means that, in a �rst approximation,



u(x; t) behaves near blow up as the explicit self-similar solutionsu(x; t) = (p� 1)(T � t))� 1p�1(1.4a) eu(x; t) = � log(T � t)(1.4b)along suitable backward parabolae centered at blow-up points.A question which naturally arises is how to obtain more detailed expansionsin larger regions, and in particular, what is the space pro�le of the singularity att = T (the so-called �nal-time analysis). It will turn out that, while �rst orderasymptotics as that in (1.3) is remarkably uniform, higher-order expansions willdepend on the concrete shape of the initial value -or rather, on its nodal properties(cf. Theorem 1, 2 and 3 below). To describe precisely the relevant results, we shallspecialize from now on to the power case f(u) = up (p > 1) in (1.2a). Following[GP2] and [GK1], we introduce similarity variables as followsu(x; t) = (T � t)� 1p�1�(y; � );(1.5a) y = x(T � t)�1=2 ; � = � log(T � t):(1.5b)We thus obtain that � solves(1.6) �� = �yy � 12 y �y +�p � �p� 1 ; y 2 R; � > � log T :In the new variables, (1.3a) reads�(y; � )! (p� 1)� 1p�1 as � !1, uniformly forbounded yNotice that �0 = (p � 1) 1p�1 is a nontrivial stationary solution of (1.6). Toobtain more detailed expansions, it seems natural to linearize about �0 by setting(1.8) �(y; � ) = (p� 1)� 1p�1 +  (y; � )and then consider the equation for the error term  (y; � ) which reads � =  yy � y y2 +  + f( ) � A + f( );(1.9) where f( ) = ((p � 1)� 1p�1 +  )p � (p� 1)� 1p�1 � p p� 1To analyze the evolution of  (y; � ) one is led to take into account the linearoperator A in (1.9), and this in turn motivates our choices of functional frame. Forq > 1 and k = 1; 2; . . . we setLqw(R) = 8<:g 2 Lqloc(R) : ZR jg(s)jqe�s2=4ds < +19=;Hkw(R) =�g 2 L2loc(R) : g(j) 2 L2w(R) for j = 0; 1; . . . k�



with the standard topology. We shall denote henceforth the L2w-norm by k � k.The operator A in (1.9) is self-adjoint in L2w(R), having eigenvalues �n = 1 � n2 ;n = 0; 1; 2; . . . with eigenfunctions Hn(y) given by(1.10) Hn(y) = cn eHn � yw� ; where cn =�2n=2(4�)1=4(n!)1=2��1 ;and eHn(y) is the standard nth-Hermite polynomialso that kHnk = 1 for any n:As  (y; � ) ! 0 when � ! 1, it is natural to assume that the linear part willeventually dominate in (1.9). Writing  (y; � ) as a Fourier series.(1.11a)  (y; � ) =X ak(� )Hk(y)we readily see that the Fourier coe�cients ak(� ) satisfy(1.11b) _ak(� ) = �1� k2� ak(� ) + hf( );Hk i ; k = 0; 1; 2; . . .where h; i stands for the natural scalar product in L2w(R). By analogy with classicalODE theory, we would then expect that(1.12)  (y; � ) � ak(� )Hk(y) for some k as � !1Indeed, not all values of k are admissible in (1.12). For k = 0; 1, linearizing in(1.11b) would yield respectively(1.13)  (y; � ) � �0e� H0(y);  (y; � ) � �1 e�=2 H1(y) as � !1 ;which are incompatible with the basic assumption (1.7). For k = 3; 4; . . . ; droppingthe nonlinear term in (1.11b) would give(1.14)  (y; � ) � C e(1� k2 )�Hk(y) as � !1:Finally, when k = 2 then linear part vanishes in (1.11b), and we obtain_a2(� ) = 12 p(p� 1) 1p�1 a2(� )2hH22 ;H2i + � � �which after integration yields(1.15)  (y; � ) � � (4�)1=4 (p � 1)� 1p�1p2 p � H2(y)� as � !1:2. Higher-order asymptotics at blow up. Classi�cation of singulari-ties. The heuristic arguments in Section 1 suggest the following result which hasbeen proved in [HV1], [HV2].



Theorem 1. - Let u(x; t) be a solution of (1.2), where f is as in (1.3a), andassume that u(x; t) blows up at x = 0; t = T . Let �(y; � ) be given in (1.5). Thenone of the following cases occurs�(y; � ) � (p� 1)� 1p�1 ;(2.1) �(y; � ) = (p� 1)� 1p�1 � (4�)1=4 (p � 1))� 1p�1p2 p � H2(y)� + o�1��(2.2) as � !1;or�(y; � ) = (p� 1))� 1p�1 � Ce(1�m2 )�Hm(y) + o�e(1�m2 )��(2.3) as � !1;where C > 0 and m is an even number , m � 4:Convergence in (2.2), (2.3) takes place in H1w(R) as well as in CK;�loc (R) for any k � 1and any � 2 (0; 1).Concerning Theorem 1, several remarks are in order. To our knowledge, theexistence of solutions behaving as in (2.2) was �rst conjectured in [HSS], where(2.2) was formally derived for the case p = 3 by singular perturbation techniques.Later, a similar expansion was formally obtained in [D] for the case f(u) = eu in(1.1). The actual existence of solutions exhibiting the behaviour conjected in [D]has been recently shown in [Br], where stability properties of such solutions werealso discussed. We also refer to [GP1], [BK] for further formal analysis for thepower-like case. The atter behaviours (2.3) seem to have been unnoticed until thework [GHV1], where the expansions listed in Theorem 1 were formally obtainedby means of perturbative methods. On the other hand, results closely relatedto Theorem 1 have been simultaneously and independently obtained in [FK]. Inthat paper, the authors dealt with the higher-dimensional version of (1.1) withf(u) = up; p > 1, and proved that if u(x; t) blows up at x = 0, t = T , then either��(y; � )� (p � 1))� 1p�1 � becomes exponentially small as � !1, or the behaviourcorresponding to (2.2) holds.In view of our preliminary discussion in Section 1, it might be thought thatTheorem 1 could be derived by a rather standard application of semilinear parabolictheory (as explained, for instance, in [H]). This is not the case, however. The keytechnical di�culty arises from the fact that the perturbation term f( ) in (1.9) isnot C1 in the L2w-topology. However, this is the natural functional frame to workin because of the aforementioned properties of the linear operator A in (1.9). Werefer to [HV1], HV2] for a detailed description of the elements in the proof.



On the other hand, a quick glance at (2.2), (2.3) suggest that these expansionscannot be uniformly valid in the y-variable. For instance, for solutions satisfying(2.2), one has H2(y)� � y2� for large y, and therefore the second and �rst term inthe expansion become of the same order when y2� � 1. This motivates introducing insuch external region the new variable � = yp� = x((T � t)j log(T � t)j)1=2 . This isprecisely the \ignition kernel variable", conjectured for instance in [D]. As a matterof fact, we have the following classi�cation of possible behaviours in larger regionsnear blow-up (cf. [HV1], [HV2]).Theorem 2. Let u(x; t); x = 0, and t = T be as in Theorem 1. Then one ofthe following cases occursi) if (2.1) holds true, then u(x; t) = ((p � 1)(T � t))� 1p�1ii) if (2.2) holds true, thenlimt"T (T � t) 1p�1 u(�((T � t)j(log(T � t)j)1=2; t)(2.4) = (p� 1)� 1p�1 �1 +�p� 14p � �2�� 1p�1 ;uniformly on sets j� j� R for any R > 0:iii) If (2.3) holds true, then(2.5) limt"T (T � t) 1p�1 u(�(T � t)1=m; t) = ((p � 1)(1 + (p� 1) pp�1Ccm�m)� 1p�1 ;where C; cm are as in (2.3) and (1.10) respectively, and convergenceis uniform on sets jx j� R for any R > 0.Let us give a quick idea of the main arguments behind the proof of Theorem 2.To this end, we shall specialize to the case (ii) there for de�niteness. A �rst stepconsists in deriving the corresponding lower bound for u(x; t)(T � t) 1p�1 u(�((T � t)j log(T � t)j)1=2; t)(2.6) � (p � 1)�1 +�p � 14p � �2 + o(T � t))�� 1p�1 as t " T;uniformly on sets j� j� R with R > 0:The proof of (2.6) makes use of scaling properties of the equation and comparisonwith a suitable subsolution. We then de�neW = ��(p�1) ; � given in (1.5):



Using (2.6), we are able to show thatkW (�; � )� (p� 1)k � C� as � !1:Set now G =W � (p � 1). Then G satis�esG� = Gyy � 12 y Gy +G = pp� 1 � G2yG + (p� 1)We use variation of constants in the equation above to write G(y; � ) in the formG(y; � ) � (homogeneous term) + (nonhomogeneous term)� G1(y; � ) +G2(y; � )and prove thatlim�!1G1(�p� ; t) = (p� 1)2�24p ; uniformly when j� j� C; C > 0;(2.7a) lim�!1G2(�p� ; t) = 0 ; uniformly when j� j� C; C > 0;(2.7b)whence (2.4). The more delicate part in (2.7) consists in deriving (2.7b), since thisinvolves estimating the nonlinear termL(y; � ) � pp� 1 � Gy2G + (p � 1) � C��(p+1)�2yfor some C > 0. We use (2.6) to bound above ��(p+1). On the other hand, weshow that(2.8) j�y(�p� ; � ) j� Cp� as � !1, uniformly for j� j� CTo obtain (2.8), we write z = j�yj, and use Kato's inequality to arrive atz� � zyy � yzyz +�12 � pp� 1� z + p�p�1zThis last equation is a linear one, and we may use variation of constants formulathere as soon as a suitable global bound for � is available. As a matter of fact, weprove that(2.9) �(y; � ) � (p� 1)� 1p�1 + C� for some C > 0 as � !1Notice the explicit constant (p � 1)� 1p�1 in the right hand side of (2.5). Theseare the elements required to arrive at (2.8).



3. Final time analysis. The results obtained in Section 2 lead naturally to thequestion of determining the pro�le of u(x; T ) when x � 0; u(x; t) being a solutionof the Cauchy problem under consideration which blows up at x = 0; t = T . Wethen have (cf [HV3]).Theorem 3. Let u(x; t); x = 0, and t = T be as in Theorem 1, and assumethat u(x; t) 6= ((p � 1)(T � t))� 1p�1 . Then the blow-up point x = 0 is isolated andthe following possibilities arisea) If ii) in Theorem 2 holds true, then(3.1) limx!0� jxj2j log jxk�� 1p�1 u(x; T ) = � 8p(p� 1)2� 1p�1b) If iii) in Theorem 2 holds true, then(3.2) limx!0�jxj mp�1 � u(x; T )� = �p� 1) 1p�1+1C cm�� 1p�1where C; cm are as in Theorem 2.It is worth noticing that no assumption on the structure of the blow-up setwas made to obtain Theorems 1 and 2. We now stress that, under our currentassumptions, the blow-up set consists of isolated points. This was already knownfor the case where u0(x) is compactly supported (cf [CM]) but our proof in [HV3]is di�erent, and makes no use of lap number arguments. On the other hand, weshould also mention that the upper bound corresponding to (3.1a) has been derivedin [GP2] under additional assumptions on the initial value u0(x).The proof of Theorem 3 proceed by means ofi) A key technical result (cf. Proposition 3.1 in [HV2]).ii) Nondimensional scaling.Since we believe that it might be illustrative for other situations, we shall elab-orate a little bit on part ii). Suppose that (2.4) holds. We then take � > 0, andconsider the family of auxiliary functionsvs(x; t) = (T � s) 1p�1u(�(s) + x(T � s)1=2; s+ t(T � s))(3.3) where �(s) = �((T � s) j log(T � s) j)1=2 and 0 < s < T ;It is readily seen that(3.4) (vs)t = (vs)xx + (vs)p when x 2 R; 0 < t < 1whereas, by (2.4)vs(x; 0) = �(p� 1) + (p � 1)24p ���((T � s)j log(T � s)j)1=2 + x(T � s)1=2)2(T � s)j log(T � s)j �� 1p�1(3.5) + o(1) as s " T , uniformly for � �xed



We now impose(T � s)1=2jx j� �(s)2 ; i.e., jx j� �2 j log(T � s)j1=2Then (3.5) yieldsvs(x; 0) � �(p� 1) + (p � 1)28p �2�� 1p�1 if (T � s) is(3.6) small enough, uniformly on jx j� �2 j log(T � s)j1=2:On the other hand, by (2.9) we have that, for T � s � 1,(3.7) vs(x; t) �  (p � 1)� 1p�1 + C�����log�T � sT �������1! (1� t)� 1p�1We now argue as follows. By estimates (3.6), (3.7), we can make use of thetechnical result mentioned above (Proposition 3.1 in [HV2]) to obtain the following:If we consider vs(x; t) in a cylinder Qn = [�n; n] � [0; 1]; � > 0 is large enough(independently on n), and s is close enough to T , then(3.8) vs(x; t) �Mn < +1 when (x; t) 2 Qn=2 uniformly as s " T :Notice that (3.8) implies that blow-up points are isolated. Indeed, settingx = 0; ex = �(s) and et = s + t(T � s), we see that for t 2 [0; 1] ands 2 �T � �; T � �2� with � > 0 small enough, (3.8) provides a bound for u(ex;et) incylinders S = �(ex;et) : �1 � jex j� �2; T � �2 � et � T� with �1 > 0 and �1; �2su�ciently small. Furthermore, (3.8) yields at once Schauder estimates in sub-cylinders Qn;� = h�n3 ; n3 i � [�; 1], uniformly as s " T for any � 2 (0; 1). This(and a typical barrier argument to control the behaviour when t � 0) enables us toconclude that there exists a subsequence (also denoted by vs(x; t)), and a functionvn(x; t) such thatvs(x; t)! vn(x; t) as s " T , uniformly on Qn;� for any(3.9a) � 2 (0; 1) ;limt#0 vn(x; t) = (p � 1)� 1p�1 �1 +�p� 14p � �2�� 1p�1 ;(3.9b) uniformly in h�n4 ; n4 i:



By allowing n to go to in�nity while repeating the previous argument at anystep, we deduce that there exists a subsequence, still denoted by vs(x; t), and afunction v(x; t) such thatvs(x; t) ! v(x; t) as s " T , uniformly on compact sets(3.10a) of R� (0; 1)vt = vxx + vp in Rx(0; 1)(3.10b) limt#0 v(x; t) = (p � 1)� 1p�1 �1 +�p � 14p � �2�� 1p�1 ;(3.10c) v(x; t) �M(1 � t)� 1p�1 for some M > 0:(3.10d)From all the statements contained in (3.10), only (3.10d) is new with respect to(3.9). Actually, (3.10d) holds for any solution of (3.4) which blows up at t = 1 andhas smooth and bounded initial values (cf [GP2]), and this last restriction is easilyremoved by application of classical parabolic theory.It then follows from (3.10) that v(x; t) is unique, and(3.11) v(x; t) = (p � 1)� 1p�1 �(1� t) +�p� 14p � �2�� 1p�1We are ready now to conclude the proof of (3.1). We just make use of (3.10a) and(3.11) to write vs(0; 1) = � 4p(p � 1)2�� 1p�1 �� 2p�1 + o(1) as s " Ti.e.,(3.12) (T � s) 1p�1 u(�((T � s)j log(T � s)j)1=2; t) = � 4p(p� 1)2�� 1p�1 �� 2p�1++ o(1) as s " TWe now set y = �((T � s)j log(T � s)j)1=2, so thatj log jyk = 12 j log(T � s)j+O(log j log(T � s)j) as s " T;y = p2 �(T � s)1=2(j log jyk)1=2 + � � � as s " T



whence T � s � (y(p2�(j log jyk)1=2)�1)2 as s " Twhich, after substitution in (3.12), yields� jyjp2(j log jyk)1=2� 2p�1 u(y; T ) � � 4p(p � 1)2� 1p�1 as y ! 0which is the desired result. The proof of (3.2) is similar; cf. [HV3] for details.We refer to [HV1] and [HV4] cf. also [BB]) for results alike to Theorems 1{3when f(u) = eu in (1.1).4. On the occurrence of di�erent blow-up behaviours. The results inSection 2 and 3 provide a classi�cation of all possible behaviours of the solutionu(x; t) of (1.2) when f(u) = up; p > 1, near a blow-up point. However, thequestion of the actual existence of solutions exhibiting such behaviours has notbeen addressed yet. A close look at Theorem 1 reveals that, if u(x; t) blows up asindicated in (2.2) (resp. as indicated in (2.3) there) then a single maximum in thescaled variable y arrives to the blow-up point y = 0 as � !1 (resp. exactly �m2 �maxima arrive to y = 0 as � !1). This is a consequence of the very structure ofthe Hermite polynomials
This suggests at once that the di�erent blow-up behaviours listed in Sections 2and 3 depend on the number of maxima which collapse exactly at blow-up. As amatter of fact, we haveTheorem 4. Let u(x; t); x = 0 and t = T be as in Theorem 1. Then thereholds a) If u0(x) has a single maximum, then the asymptotic behaviourof u(x; t) as (x; t) ! (0; T ) is given by (2.2),b) For any T > 0 , there exists C > 0 and an initial value u0(x) suchthat the corresponding solution behaves near (0; T ) as indicatedin (2.3) with m = 4.



Let us remark briey on Theorem 4. Part a) is quite natural, since the numberof maxima of solutions of parabolic equations cannot increase in time. This basicfact has been repeatedly and independently used by many authors; cf. for instance[M], [A], [AF],..... As to b), we need to obtain a solution which has two maximacollapsing at blow-up. To this end, we proceed by considering initial values u0;R(x)consisting of two symmetric bumps a distance R apart,
As R > 0 varies, intuition suggests thati) For R small there is blow-up at a single point,ii) For R large there is blow-up at two points.Taking the in�mum of such R for which (ii) above holds we obtain a value R�such that the corresponding solution arrives at (0; T ) with two maxima. This isthe natural candidate for the initial value in part b) in Theorem 4, and this is theway we proceeded to derive such a result. However, we should point out that arigorous proof needs to overcome some technical problems. In particular we needto establish Continuity of the blow-up time with respect to the initial(4.1) data;Continuity of the location of blow-up points with respect(4.2) to the initial valuesWhile (4.1) is comparatively easy, (4.2) requires in our approach of rather so-phisticated techniques (in particular, we rely on Proposition 3.1 in [HV2], whichwas already an ingredient in the proof of Theorem 3). See also [GK3] for a relatedargument. Similar results hold when f(u) = eu in (1.2); cf. [HV4].One may expect solutions satisfying (2.3) to exist for any value m = 6; 8; 10; . . . .There would be characterized by collapse of 3; 4; 5; . . . maxima at blow-up. We havebeen unable to prove existence of such solutions so far.5. Blow up properties of local solutions. We have been concerned untilnow with solutions of the Cauchy problem (1.2). A question which readily arises iswhether the previous results are of a local nature. This has been recently discussedin [V], and we will briey sketch here the main results therein.



Let R > 0 be given, and let u(x; t) be a positive solution of(5.1) ut = uxx + up when = �R < x < R; t > 0 ;with p > 1, such thatu(x; 0) = u0(x) when �R < x < R, where u0(x) is as in(5.2) (1.2b):Notice that no boundary conditions are prescribed. It is �rst shown in [V] thatall our previous analysis carries through if blow up occurs at the interior of (�R;R).More precisely, we haveTheorem 5. Let u(x; t) be a solution of (5.1), (5.2) which blows up atx = x 2 (�R;R) and t = T . Assume that the blow-up set is contained in aninterval [��; �] with 0 < � < R. Then the asymptotic behaviour of u(x; t) as(x; t) ! (x; T ) is given by Theorem 1 (with y = (x � x)(T � t)�1=2 in (1.4b)).Moreover, the results of Theorems 2 and 3 also hold true.We point out that the separation assumption on the blow-up set made above isknown to hold in many cases, as for instance,(5.3a) When homogeneous Dirichlet (or Neumann) conditions are addedto (5.1), (5.2);(5.3b) In general, whenever the number of maxima is a prioribounded:(cf. [FM], [GK1], [CM],. . . ). Actually, violation of (5.3b) leads to an example inwhich new behaviours arise and the blow-up set reaches the boundary.Theorem 6. For any R > 0, there exists � > 0 small enough and a solutioneu(x; t) of the equationut = uxx + up in (�R;R) � (T � �; T ) ; p > 1such that eu(x; t) 6= ((p � 1)(T � t))� 1p�1 and eu blows up in the whole interval(�R;R) � (T � �; T ). Moreover, we have thatjeu(x; t)(T � t) 1p�1 � (p� 1)� 1p�1 � (T � t)�1w(ix; T � t)j(5.4) � K exp��54 (T � t)�2�uniformly on jx j� C < R, wherew(z; t) is Tikhonov's function for the heat equation(cf [W]), and K is a positive constant.Note that (5.4) describes a atter behaviour than any of those considered inTheorem 1. Actually, eu(x; t) is constructed in [V] in such a way as to ensure that



the number of maxima increases as t " T . In particular, if t1 < t2 < T we have asituation as that depicted below.

6. General blow up patterns. Let us return now to the study of the Cauchyproblem considered in Sections 2 to 4. So far, we have obtained a classi�cation ofall possible blow-up behaviours, and have shown that the H2(y) and H4(y) patternsactually occur (cf. Theorem 4). We have also seen that it is reasonable to expectthe existence of Hm(y) behaviours for m = 6; 8; 10; . . . although no proof of suchfact is known to us as yet. We next set out to examine the following questionwhich of these behaviours is likely to be observed?or, in another wordswhich of the previous behaviours is stable under smallperturbations?Again, it is easy to guess what the logical answer should be. Indeed, the H2(y)pattern in (2.2) looks stable, whereas those in (2.3) do not. The reason is that anyHm(y) behaviour (m = 4; 6; 8; . . . ) would correspond to �m2 � maxima coalescingexactly at blow up, a delicate balance likely to be destroyed by a slight change inthe initial value u0(x). Any such change however, would lead to a new datum stillhaving one maximum if that was the case for the original value u0(x), and thisstrongly indicates the stability of the H2(y)-pro�le.We next proceed to state these results in a precise way. Let eu(x; t) be a solutionof ut = uxx + up when x 2 R; t > 0 ; p > 1;(6.1) u(x; 0) = eu0(x) when x 2 R;(6.2)



and assume thateu(x; t) blows up at points x1; . . . ; xk (k � 1) at time t = T :We then haveTheorem 7. a) Suppose that eu0(x) is continuous, nonnegative and compactlysupported, eu0(x) 2 C0(R). Then, for any " > 0 there exists u0(x) 2 C0(R) suchthat(6.3) maxx2R j u0(x) � eu0(x) j� "and the solution u(x; t) of (6.1) with initial value u0(x) blows up at a single pointx and (2.2) (with y = (x � x)(T � t)�1=2; T being the new blow up time) holds.Moreover, u0(x) can be selected so that, for any �xed i = 1; . . . ; k(6.4) jx1 � x j! 0 as "! 0b) Suppose now that eu(x; t), blows up at a single point ex and (2.2) (withy = (x � ex)(T � t)�1=2)) holds. Then there exists " > 0 small enough, dependingon eu0(x), such that for any u0(x) 2 C0(R) which satis�es (6.3), the correspondingsolution u(x; t) blows up at a single point x, and (2.2) (with y = (x�x)(T � t)�1=2)holds. Moreover (6.4) is also satis�ed with x1 replaced by ex. In another wordsGeneric blow-up � Single point blow-up of H2(y)-type, i.e.,such that (2.4) holdsBefore proceeding any further, a few remarks are in order. We do not reallyneed eu0(x) to be compactly supported. All that is required is blow-up to occur ina compact set, and this indeed happens if eu0(x) decays rapidly enough at in�nity(cf. [GK3]). On the other hand, the existence of solutions which blow up at exactlyk points (with k arbitrary) has been recently proved in [M] for Dirichlet problemsin bounded intervals; cf. in this context our discussion in Section 5 above. Finally,generic properties have been discussed for higher-dimensional versions of (1.1) insome cases. Consider for instance the problemut = �u+ eu when x 2 
; t > 0u(x; 0) = u0(x) for x 2 
; t = 0;u(x; t) = 0 for x 2 @
; � � 0where 
 is bounded, regular and convex. It has been recently proved in [Br2] thatfor any given point x0 2 
, there exists an initial value u0(x) such that the corre-sponding solution blows up at x = x0 with H2(y)-type behaviour. Furthermore, asmall perturbation in such datum u0(x) still preserves the H2(y)-pro�le at blow up.



Theorem 7 is proved in [HV5]. We shall here restrict ourselves to stress themain ideas in the proof of part a). As indicated by the very nature of the result,our approach is a perturbative one. Suppose that eu(x; t) solves (6.1), (6.2). We set(6.3) u0(x) = u0;"(x) = eu0(x) + " eR0(x)where 0 < " < 1, and eR0(x) will be selected later. Let u"(x; t) be the solution of(6.1) with initial value u0(x) s in (6.3). Then, formally(6.4) u"(x; t) = eu(x; t) + " eR(x; t) + � � �where eR satis�es eRt = eRxx + peup�1 eR(6.5a) eR(x; 0) = eR0(x)(6.5b)Notice that (6.5a) is linear, but the potential peup�1 becomes singular at t = T .A key point in the proof consists in deriving the following resultLet x1 be a blow-up point of eu. Then, for i = 1; . . . ; k(6.6) eR(x; t) � �1(T � t)� pp�1 uniformly on sets jx � x1 j� C(T � 1)1=2where the �1 are generically arbitrary. More precisely, forany given set of constants �1; . . . ; �k, and any � > 0, we maypick eR0(x) such that (6.6) holds with j �1 � �1 j< � for anyi = 1; . . . ; k:Consider now the perturbed solution u"(x; t) (cf. (6.4)). By (1.3a), we knowthat(6.7) u"(x; t) = ((p � 1)(T" � t))� 1p�1 + � � �T" being the new blow-up time. On the other hand, by (6.4) and (6.6), we havethat(6.8) u"(x:t) = (p� 1)(T � t)� 1p�1 + "�1(T � t)� pp�1 + � � �near any blow up point x1. A crucial step towards our goal consists then in provingthat there exists a common region of validity of (6.7) and (6.8). SettingT" = T +�T"



we deduce from such a result that(6.9) �T" � �" �1(p� 1)� pp�1Once (6.6) and (6.9) have been obtained, our strategy goes as follows. We pickone of the blow-up points of eu, say xj , and select then eR0(x) so that (6.6) holdswith �1 < 0 when i 6= j and �j > 0. Recalling (6.9), blow-up is postponed nearxi (i 6= j) and it is anticipated near xj . Since the number of maxima of eu is �nite byour assumptions on eu0(x), repetition of the previous argument leads to the situationwhere there is a single point blow-up at, say, x = 0 with perhaps several maximacollapsing there. For simplicity, we shall just consider the case of two maxima, sothat the rescaled space pro�le looks like

We then derive a re�nement of (6.6). Namely, we prove that eR0(x) can beselected such that eR(x; t) � � x (T � t)� pp�1 ; uniformly on setsjx j� C(T � t)1=2 ; where � 6= 0Recalling (6.8) and (2.3), we obtainu"(x; t) = ((p � 1)(T � t))� 1p�1 � C(T � t)� 1p�1+1H4(y)(6.10) + � " x(T � t)� pp�1 + � � �Let us assume for de�niteness that � > 0. When t � 0, the �rst two terms inthe right of (6.10) dominate, and the H2(y)-pro�le is basically preserved. However,when (T � t)2 � ", the third term there dominates over the second one, so that if



x(t) is the level line described by the maximum located to the left of x = 0, we seethat(6.11) u"(x(t); t) < ((p � 1)(T � t))� 1p�1 for t � TSince M(t) = u"(x(t); t) satis�es M(t) �M(t)p, it follows from (6.11) that x(t)cannot reach the blow up point at blow up time, whence the desired result. Thecase where � < 0 is similar7. Related evolution problems. The approach sketched above applies to avariety of problems of the typeut = uxx � f(u); f nonnegativeFor instance, it can be used to analyze the extinction or dead core case ([K],[EK], [BS], [FH], [CMM], [GHV2]; . . . ). Consider the Cauchy problemut = uxx � up when x 2 R; t > 0; 0 < p < 1(7.1) u(x; 0) = u0(x) when x 2 R;(7.2)where u0(x) is as in (1.2b). It is known that the solution u(x; t) of (7.1), (7.2)vanishes in a �nite time, in the sense that there exists T � 2 (0;1) such thatu(x; t) � 0 for t � T �. The in�mum of such times T � is then called the extinctiontime T of u. A point x0 is named an extinction point if there exist sequencesfxng; ftng such that limn!1 xn = x0; limn!1 tn = T and u(xn; tn) > 0 for any n.On the other hand, solutions may develop dead cores, i.e., regions where u(x; t) =0 for t < T , even when u0(x) is everywhere positive. The sets where u > 0 andu = 0 are separated by interfaces or free boundaries. The following results havebeen proved in [HV6].Theorem 8. Assume that u0(x) is as in (1.2b) and has a single maximum.Then u(x; t) vanishes at some time t = T at a single extinction point x0. Moreover,we have limt"T (T � t)� 1p�1 u(x0 + �((T � t)) j log(T � t) j)1=2; t)(7.3) = (1� p)� 1p�1 �1��1� p4p � �2�� 1p�1+where s+ = max(s; 0), uniformly for j�j � R and R > 0. On the other hand, fort � T there exists continuous curves �1(t); �2(t) such thatu(x; t) > 0 in I = (x0 � �1(t); x0 + �2(t)) ; u(x; t) = 0(7.4a) whenever x =2 I;



(7.4b) limt"T �21(t)(T � t) j log(T � t)j = � 4p1� p� for i = 1; 2The reader will notice the analogy between (7.3) and (2.4), the role of (1.4a)being played now by the explicit solutionu(x; t) = ((1 � p)(T � t))� 1p�1+However interfaces cannot appear in (1.2), and need to be dealt with by meansof new suitable techniques in the extinction case. On the other hand, as in (1.2),atter asymptotics are indeed possible. In particular, we haveTheorem 9. There exists an initial value u0(x) and a constant C > 0 suchthat the corresponding solution of (7.1), (7.2) has a single extinction point atx = x0; t = T , and satis�eslimt"T (T � t)� 1p�1 u(x0 + �(T � t)1=4; t)(7.5) = (1 � p) 1p�1 (1� C�4) 1p�1+uniformly on sets j� j� R with R > 0:Moreover, there exist continuous curves S1(t); S2(t) such that, for t � T ,u(x; t) > 0 in I = (x0 � �1(t); x0 + �2(t)); u(x; t) = 0 if x =2 1:(7.6a) limt"T Si(t)(T � t)1=4 = � 1C�1=4 for i = 1; 2; where C is as in (7.5):(7.6b)When p < 0 in (7.1), the absorption term there becomes singular when u = 0,and one is led to the so-called quenching problems (usually written in the variablev = 1�u), which have been extensively studied after reference [Ka] appeared; see forinstance [Le2] for a comprehensive survey on that problem. An interesting questionthere is that of describing the asymptotic pro�le of solutions near quenching points,i.e., near points where u becomes zero. We refer to [FG] for recent results in suchdirection. REFERENCES[A] S. Angenent, The zero set of a solution of a parabolic equation, J. Reine Angew Math. 390(1988), 79{96.[AF] S. Angenent and B. Fiedler, The dynamics of rotating waves in scalar reaction-di�usionequations, Trans. Amer. Math. Soc. 307 (1988), 545{568.[AW] D.G. Aronson and H.F. Weinberger, Multidimensional nonlinear di�usion arising in pop-ulation genetics, Advances in Math. 30 (1978), 33{76.
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