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Abstract 

In this paper we study the large N limit of the Standard Model Higgs sector with NA, Ng* and Ng’* constant and 
N being the number of would-be Goldstone bosons. Despite the simplicity of this method at leading order, its results 
satisfy simultaneously important requirements such as unitarity and the low-energy theorems in contrast with other more 
conventional approaches. Moreover, it is fully compatible with the Equivalence Theorem and it yields a consistent description 
of the Higgs boson mass and width. Finally we have also included a phenomenological discussion concerning the applications 
of this method to the LHC. 

PACS: 11.15.Pg; 14.80.Gt 

1. Introduction 

As is well known, the most popular theoretical de- 
scription of the Symmetry Breaking Sector (SBS) 
of the Standard Model (SM), is given by the Min- 
imal Standard Model (MSM) which is nothing but 
an SU( 2)~ x U( 1)~ gauged linear sigma model. In- 
deed, the hidden sector displays an SU( 2) L x SU( 2) R 
global symmetry which is spontaneously broken down 

to SU( 2)~+,+ This mechanism is responsible for the 
spontaneous breaking of the gauge symmetries of the 
complete model. In this scheme we have three would- 
be Goldstone bosons, which will give masses to the 
Wf, W- and Z” through the Higgs mechanism. They 
parametrize the space spanned by the three broken 
generators, i.e. the coset 

su(2)L x su(2)R -o(4) 

SU@)L+R - o(3) * 
(1) 
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There is however a particle which survives the Higgs 
mechanism, which is known as the Higgs boson. This 
particle is the only missing piece of the MSM and for 
this reason it is very important to be able to predict 
its behaviour in order to confirm or reject the MSM 
experimentally. 

At tree level the dynamics of the Higgs sector is 
controlled by its self-coupling A. In fact, its mass is 
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related with this constant by the simple equation M2 = 
2Av2, where v 21 250 GeV is the vacuum expectation 
value. Notice that this equation suggests that a heavy 

Higgs will give rise to a strongly interacting Higgs 

sector (see [2] for review). However, it should be 

kept in mind that for large A the above equation does 

not hold any more, since perturbation theory is not 

reliable. As a matter of fact, the tree level amplitudes 

break unitarity for Higgs masses around 1 TeV [ 31. 

Therefore, it seems clear that a more complex dy- 

namics should emerge for large coupling. At the same 

time, there are strong hints supporting the triviality 

of the minimal Higgs sector (see [ 41 for a review), 
which means that it should be considered as some kind 

of effective theory which can be applied only for en- 

ergies well below some cutoff A. In such case, the 

Higgs mass becomes a decreasing function of this cut- 
off in such a way that, at some point around 1 TeV, 

one has M N A. This fact is usually interpreted as an 

upper bound for the Higgs mass, since it should not 

be larger than the cutoff A of the effective theory. 

From the practical point of view the natural place to 

probe this dynamics is gauge boson scattering. As it is 

well known, the longitudinal components of the W+, 
W- and Z” gauge bosons are related with the three 

would-be Goldstone bosons. The precise relation is 

given by the Equivalence Theorem (ET) [ $31, which 

states that at high energies the S-matrix elements of 
longitudinal gauge bosons are the same as those of 

their corresponding GB. This theorem is very useful 

since it is far easier to work with the would-be Gold- 

stone bosons than with gauge bosons. The ET has been 

widely used in many studies concerning the discovery 
of the Higgs boson at the future Large Hadron Col- 
lider (LHC) (see [ 61 and references therein). With 

its help at lowest order in the g and g’ SU( 2) L x U( 1) r 
gauge couplings, it is possible to reduce the study of 

longitudinally polarized gauge boson dynamics to the 
non-gauged O(4) /O( 3) linear sigma model. 

Nevertheless, the tree level, or even the one-loop 
approximation [7], does not provide a complete de- 
scription of the expected behaviour of the physical 
Higgs [ 81. This is due to the fact that, in the strong 
interacting regime, i.e. for large A, the standard pertur- 
bation theory does not work. In particular it is not able 
to reproduce properly the position and the width of 
a heavy Higgs. For this reason some non-perturbative 
techniques have been studied in the literature like the 

N/D method (see [31 and [ 91) or the PadC approx- 
imants [ lo]. 

An alternative approach to those listed above is the 

SO called large N limit [ 111. The main idea is to ex- 

tend the 0(4)/O(3) symmetry breaking pattern of the 
linear sigma model to O( N + l)/O( N). Once this is 

done, the amplitudes are obtained to lowest order in 

the l/N parameter [ 121. The relevant point is that in 
this simple manner it is possible to study some proper- 

ties of the Higgs dynamics, which are expected theo- 

retically, but that cannot be reproduced with more con- 

ventional techniques. In particular, the would-be Gold- 
stone boson elastic scattering amplitudes are unitary 

(up to O( 1/N2) corrections) and satisfy the Weinberg 
low-energy theorems coming from the O(N) symme- 

try [ 131. Moreover, the Higgs propagator has a pole 

in the second Riemann sheet that has to be understood 
as the physical Higgs. The position of this pole is a 

function of the renormalized Higgs mass M but its real 
part is never bigger than some value around 1.5 TeV, 

even in the M + 00 limit. The fact that there is a sat- 

uration value for the Higgs mass is consistent with the 
assumed triviality of the O( 4) /O( 3) model and has 

also been found in other non-perturbative approaches 

like the above mentioned N/D method or the PadC 

approximants. 

In this work we have applied the large N techniques 

to an O( N + 1) /O( N) linear sigma model which has 

been gauged with the SU( 2)~ x U( 1)~ symmetry of 
the SM. The aim of this generalization is twofold. First 

it will be possible to compute the elastic gauge boson 
scattering amplitudes without using the ET. This is 

very important since then we can apply our results 
at low energies too. Nevertheless we show how the 
ET works remarkably well in the large N approach, 
which is also a nice check of our computations at 

high energies, Second, by gauging the linear sigma 
model, we are able to include systematically the g 
and g’ corrections keeping at the same time the very 

good properties of the standard large N limit. We will 
show that this approach is very easy to implement and 
for this reason it is appropriate to describe the Higgs 

phenomenology at the LHC. 
The plan of the paper goes as follows. In Section 

2 we introduce the SU( 2) L x U( 1) Y gauged U( N + 
1) /O(N) linear sigma model. In Section 3 we study 
the main properties of the physical Higgs boson in 
this approximation. In Section 4 we check our method 
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with the equivalence theorem and how it is satisfied in 
the large N limit. In Section 5 we show our numerical 
results, which are relevant for the LHC phenomenol- 
ogy. Finally in Section 6 we give the main conclusions 
of our work. 

2. The large iV limit of the Higgs sector 

We start from the sum x U( 1 )Y gauged 
version of the linear sigma model sum x 

su(2) R/SU@) L+R N 0(4)/O(3) generalized to 
the coset 0( N + l)/O( N). The classical lagrangian 
is then given by 

c = &M + ;(D,@)rDp@ - V(&) , (2) 

with (Pr = (n-r, 7~*, . . . , T’, (T) and (P* = @r@. As 
usual, LYM is the standard SU( 2) L x U( 1)~ Yang- 
Mills term and the covariant derivatives are defined as 

D,@ = a,@ - igTkWE@ + ig’TYB,@ , (3) 

where the SU( 2) L and the U( 1) r generators are T,” = 
-(i/2)Mi and TY = -(i/2)My with 

0 0 + . . . 0 
0 0 0 . . . - 

Mi= 

i I -oo...o , 
. . . 
0 + 0 . . . 0 

0 + 0 . . . 0 
- 0 0 . . . 0 

Mi= 

0 + 0 . ..o 
- 0 0 . ..o 

MY= 

0 0 + . ..o 

where all the non-written entries vanish. The potential 
is given by 

V( a+ = -/AD* + f (@*)*, (4) 

whose tree level minimum is reached whenever @* = 
v2 = NF* = 2,u2/h. As a consequence once we choose 
a vacuum to quantize the theory, the original 0( N+ 1) 
symmetry will be broken down to O(N). With the 
standard choice QTac = (O,O, . . . ,O, v) and defining 
the Higgs field as H = (T - v, we can write 

v(~, H) = -~M”H* - $(p2 + ~~~~ 

- AvH(r* + H2), (5) 

where the tree level Higgs mass is given by Mi = 
2hv2. 

In order to obtain a well defined perturbation the- 
ory, one has to add a gauge fixing and a Faddeev- 
Popov term to the lagrangian in Pq. (2). As far as 
we are dealing with a gauge theory which is sponta- 
neously broken, it is specially useful to choose an Rt 
gauge, where now T’ , r2 and r3 can be directly iden- 
tified with the would-be Goldstone bosons. With the 
complete lagrangian at hand it is possible to derive 
the Feynman rules following the usual procedures. For 
convenience, we will be working all the time in the 
Landau gauge, which simplifies the calculations since 
the ghosts do not couple directly to the 7p fields and 
their propagator does not have a mass term. 

3. The Higgs mass and width 

In order to study the main properties of the Higgs 
resonance in the large N limit of the model defined 
above, we will start by setting g = g’ = 0, i.e. we will 
turn off the gauge interactions. Thus the only fields we 
have to consider are the N Goldstone bosons 7p and 
the Higgs H. Thanks to the remaining O(N) symme- 
try as well as to crossing symmetry, the scattering am- 
plitude for the process n”& -+ 7Tc& can be written 
as 

Tobcd(~,t,~) =A(s,t,u)&& +A(t,s,u)&%,d 

+ A(u, t, S)&dabc. (6) 

The tree level contributions to the A function ( Ao) 
are obtained from the diagrams in Fig. la 
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Fig. 1. Diagrams contributing to: a) The tree level Goldstone boson scattering amplitude. b) The leading order in the l/N expansion for 
the same process. c) The Higgs propagator at leading order in the l/N expansion. 

AoW=4+-&) =&4Mi. 
(7) 

and therefore they only depend on s. In the large N 
limit, the relevant diagrams are those shown in Fig. lb, 
which are known as bubble diagrams. Each of the 
loops contributes with the same factor and the sum of 
all those diagrams can be seen as a geometric series 
which amounts to 

A(s) = s 
1 

NF2 1 - s/M; + sl (s) /2F2 ’ 
(8) 

where the divergent one-loop integral I(s) can be cal- 
culated using dimensional regularization. The result is 

-1 
I(‘) = (4T)2 N.+2-logz , 

> 

where as usual 

N,=z+log47r-yE, (10) 

and p is an arbitrary renormalization scale. Thus, in 
the large N limit the A function only depends on s. The 
1 /e divergencies appearing in I ( s) can be absorbed in 
the renormalized Higgs mass Mi which can be defined 
as 

1 N, + 2 -= ‘+ 
M; - ML 2(4~r)~F~ 

so that we find 

(11) 

A(s) = s 1 

NF21-*++log$ 
(12) 

In this approach the Higgs mass is the only parame- 
ter that needs renormalization and in particular there 
is no wave function renormalization. Thus the above 
amplitude is an observable and ,x independent quan- 
tity. This fact can be used to find the dependence of 
the renormalized Higgs mass MR on the renormaliza- 
tion scale ,u which turns out to be 

M;(P) = M;(Po) 
l-$$$rlog$ 

(13) 

The renormalized coupling AR can be defined in order 
to keep the tree level relation IV; = 2&NF2 and 
then its running can be easily obtained from the above 
evolution equation. In practice it is useful to introduce 
the mass parameter M2 defined by the equation 

M2=M;(M2), 

and then 

(14) 

M;(P) = 
M2 

’ - d$F 1% 5 
so that 

AR(p) = 
A(M) 

1 - w log $ . 

(15) 

(16) 
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Fig. 2. Evolution of the position of the (t& pole in the E = 6 complex plane. We display the lower half of the second Riemann sheet 
as a function of the M parameter. Notice how the distance to the real axis grows with M, whereas the real part of the position remains 
bounded. The scale is the same for the three figures. 

From this formula we can obtain the position A of the 
Landau pole in this approximation which is given by 

A2 = &,%& . (17) 

Therefore, for g = g’ = 0 the mass parameter is the 
only free parameter of the model and all the observ- 
ables can be obtained in terms of it. However, this mass 
should not be confused with the physical Higgs mass. 
The physical mass is the mass of the resonance ap- 
pearing in the scattering channel with the same quan- 
tum numbers as the Higgs particle. 

In the real world, where N = 3, the coset space 
is 0(4)/O(3) = SU(2)L x SU(2)R/SV(2)~+~ and 
thus the interactions are SU(~)L+R symmetric (weak 
isospin group). Hence there are three Goldstone 
bosons and the scattering channels can be labelled by 
the third component of the isospin which can take the 
values I = 0, 1,2. For an arbitrary N it is still possible 
to define the appropriate generalization of the above 
mentioned channels which are then given by [ 141 

To(s, t,~) = NA(s, t, u) + A(r, s,u> + A(u, t, s) , 

TI (s, t, u) = Act, s, u> - A(u, f, s) , 

T2(s, f,u> = A(f,s,u) + A(u,f,s) . (18) 

Let us now recall that in E!q. (8) we had found that 
A(s,f,u) N A(s) N U( l/N) and therefore 

To = NA(s) = O( l/N) (19) 

is the only non-zero isospin channel in the large N 
limit. Fortunately, that is precisely the channel where 

the Higgs would appear. Customarily the amplitudes 
are also projected in definite total angular momentum 
states, leading to partial waves tlJ. It is also obvious 
that in this case only the toa survives since 7’0 only 
depends on s. Indeed 

-I 

too(s) = s 
321rF~ 

+u $ . 0 (20) 

This partial wave has some properties which make 
the large N limit a sensible approximation to Higgs 
physics. First, at low energies we find 

(21) 

in agreement with the Weinberg low-energy theorems. 
Second, this partial wave has the correct unitarity cut 
along the positive real axis of the s variable. Indeed, it 
can be easily checked that for physical s values, which 
are located right on the unitary cut where log( -s) = 
logs - ir, we have 

Imfoo = jfm12 + O( l/N) , 

which is the elastic unitarity condition. 

(22) 

Finally, we want to remark that it is possible to find 
numerically that the partial wave in Eq. (20) has a 
pole in the second Riemann sheet. This pole can be 
understood as the physical Higgs resonance. In Fig. 2 
the position of this pole is shown in the complex plane 
for different M values. 
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Fig. 3. I?~]* versus fi for different values of the Higgs mass 
parameter M as defined in IQ ( 14). Even for values as large as 
M = 10 TeV, the position of the resonance is not higher than 1.5 
TeV. 

For low M values the physical Higgs resonance is 
narrow and the standard Breit-Wigner description of 
the resonance can be safely applied. Then the physical 
mass is just given by M whereas the width is 

M3 
l-Z----- 

321rF2 ’ 
(23) 

which is the tree level result. However, when M in- 
creases, the Higgs resonance becomes broader and 
broader. The pole migrates down in the complex plane 
and the Breit-Wigner description cannot be used any 
more. However, the real part of the pole position re- 
mains bounded even for very large M as can be seen 
in Fig. 3. This feature is usually called “saturation” 
and it has also been observed in other non-perturbative 
approaches to the Higgs dynamics. In particular this 
behaviour was obtained using the N/D method in [ 31 
and [ 91, using the Pad6 approximants in [ 101 and us- 
ing the large N limit in [ 121. 

4. Gauge boson scattering and the equivalence 
theorem 

We have already stated that our aim in this work is 
to study the large N limit of the Higgs sector including 
the electroweak gauge bosons. More precisely we are 
considering the N + 00 limit but keeping N2 and 
Ng’* constant. We will see that such an approach to 
the gauged Higgs sector turns out to be very useful 

since it provides a sensible description of gauge boson 
interactions that still allows easy calculations. 

In the following we will concentrate in the elastic 
scattering process VV -+ W where V = W*, Z”. In 
order to obtain the leading contribution in the approx- 
imation defined above, the first observation is that the 
diagrams at tree level are O(8) (or 0(g’2) ). Due 
to the particular way in which the large N limit has 
been defined, those graphs are 0( l/N) too. To find 
the complete set of diagrams contributing to the large 
N leading order, we have to include into the tree di- 
agrams any possible internal loop without increasing 
their g2, g’2 or l/N power dimensions. It is fairly sim- 
ple to see that that cannot be accomplished with gauge 
boson loops. Concerning the scalars, the relevant ob- 
servation is that gauge bosons are only coupled to the 
three first ?p, whereas the Higgs interacts with all 
them. Thus, the only r loops appearing in the large N 
limit are those coupled to the Higgs field. 

The main effect of those r loops is to contribute to 
the Higgs propagator as it is shown in Fig. lc. Note 
that, as far as we are working in the Landau gauge, 
where all the QT fields are massless, many other possi- 
ble 7~ loop diagrams vanish, since they are proportional 
to s d4-Eq/q2 which is zero when using dimensional 
regularization. 

It is not very difficult to calculate the diagrams in 
Fig. lc. Using the renormalization prescription of the 
previous section for the renormalized Higgs mass, we 
find the Higgs propagator 

D($>= ’ 1 

q2-MR(-q2) +O iii ’ 0 
where MR( -q2) is defined in Eq. ( 15). It is obvious 
that this D( q2) has exactly the same pole in the sec- 
ond Riemann sheet than the too partial wave amplitude 
in Eq. (20)) which corresponds to the physical Higgs 
resonance. At the same time, for small M, we find 
MH( -q*) -+ M and thus we recover the standard per- 
turbative (tree level) behavior of the Higgs resonance 
whose width would then be given by Eq. (23). There- 
fore the above propagator describes properly the Higgs 
resonances both in the perturbative (light Higgs) and 
the non-perturbative regime (heavy Higgs) . 

The most relevant consequence of the previous dis- 
cussion is that the W ---t W leading diagrams are just 
those at tree level, but using the above Higgs propa- 



A. Dobado et al./ Physics Letters B 387 (1996) 563-572 569 
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1 W-h_h&y-_ .P w-n,,-. _nv P W- 20 

b) 

Fig. 4. a) Diagrams contributing to the W+ W- - Z”Zo process at leading order in the 1 /N expansion. b) Tree level diagrams contributing 
to the QT+?~- -S ?r”rro amplitude containing an integral gauge boson line. 

gator instead of that calculated at tree level. For ex- 
ample, the contributions to WfW- + 2'2' can be 
found in Fig. 4a. Thus in this limit the calculations 
are not much more difficult than at tree level. How- 
ever, the unitarity properties of the large N amplitudes 
are greatly improved and the Higgs mass and width is 
properly described in a way which is compatible with 
other non-perturbative approaches. 

An important test for the consistency of the approxi- 
mation is provided by the Equivalence Theorem (ET). 
This theorem states that the S-matrix elements of lon- 
gitudinal electroweak gauge boson are the same as 
those of their associated would-be Goldstone bosons, 
up to O(m/E) corrections, where m = mw, rnz and 
E is the typical C.M. energy of the process. Thus, on 
the one hand, at high energies the scattering of longi- 
tudinal gauge bosons provides information about the 
Higgs sector of the SM. On the other hand, the ET 
can be used to calculate the longitudinal gauge boson 
scattering at high energies in terms of scalars, which 
are much easier to handle. In fact most of the calcula- 
tions performed for the LHC until now have used this 
theorem. 

In the approach followed here we are including ex- 
plicitly the gauge degrees of freedom and therefore we 
do not need to use the ET at all. As a consequence, our 
approach will be more reliable at lower energies than 
if we had used the ET, which is neglecting O(m/E) 
terms. Nevertheless, the theorem can be useful as a 

tool to check our results. For example, it relates at high 
energies the W+ W- -+ Z”Zo and the &v- -+ ?r”ro 
S-matrix elements. At this moment a few comments 
are in order. First the s-matrix elements in both sides 
of the theorem can be expanded in terms of 1 /N and 
thus it should apply order by order in l/N. In this 
work we are considering the N --+ cc with hN, g2N 
and gt2N constant. In particular that means that for the 
n-+r- -+ 7rOn-O process one has to include, at lead- 
ing order, the diagrams in Fig. 4b in addition to those 
in Fig. 1. This is because in the previous section our 
model had not been gauged yet, but once it is gauged 
the new diagrams which are 0(g2) are also O( l/N) 
and they should not be forgotten. These new diagrams 
are O(2) whereas those considered in the previous 
sections are simply O( 1 /N) . 

Thus the leading order for this amplitude reads 

T( r+r- --+ row’) 

s 1 

= s - Mi(-s) 4( 1 -x2) - 4% + !$ 

X 1 -4”:b;s)(1-X2)+2g2(3+x2) 

_ 2@(-s) & m2,m$ 
u2 

-&5+x2) + 1273 

(25) 
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where s = 4E2, E is the 72 energy, 0 is the scattering 
angle and MR( -3) can be obtained from Eq. (15). 

Note that, as far as --s is negative, MR( -s) produces 

the imaginary part and the cut for the above amplitude 

required for unitarity. 

After a lengthy but straightforward calculation us- 

ing the Feynman rules coming from the lagrangian in 

Eq. (2) (plus the standard gauge fixing and Faddeev- 

Popov terms) and projecting out the longitudinal 

components, we arrive to the following result for the 

WL Wi -+ Z,Z, scattering amplitude: 

T( wL+w; --) Z,Z,) = 
s 

s - M2,(-s) 
1 

X 
4(1-X2) -4$1-2X2) +$(1-4X2) 

X 

[ 

-qM 
; 

;;s+1 -X2) +2g2(3+x’) 

+2 M ; iFs) !!$(l _ 7X2) 

+4m?v m2W 
-&-14+5X?+? ;;s)$(l+x2) : 

f8 
m2, rn$ 
-J+3+& -4 M i ,‘;s) %( 1 + 2x2) 

m2, m& 
--J-&l -4x2) . 

I 
(26) 

As expected, it can be easily checked that these two 

amplitudes satisfy the ET. One potential problem that 

could appear when using the ET comes from the dif- 

ferent renormalization of the gauge boson and r wave 
functions [ 151. Fortunately, at leading order our l/N 
expansion does not need wave function renormaliza- 

tion and the ET can be safely applied. 

In order to illustrate the above discussion and to 

check our computational methods we have displayed 
in Fig. 5 the scattering cross section of W,‘W; + 
ZfZf versus that of 7r+rrTT- 4 r”?ro. The former is 
represented by a continuous line whereas the latter has 
been drawn discontinuously. Notice that to all means 
and purposes they overlap at high energies (E > 
1.2 TeV). 

From Fig. 5 we can observe that either with or with- 
out the ET, the large N approximation is able to re- 
produce a well shaped Higgs resonant behaviour and 
very good high energy properties. The small numeri- 

WV) 

Fig. 5. Comparison of the total W+ W- --f Z”Z” cross-section 
at different A’. for ) COSS) < 0.8, calculated with our large N 
approach, either with (dashed line) or without the ET (continuous 
line). 

cal differences up to almost 1.2 TeV are simply due 

to the fact that the ET is neglecting the 0( m/E) con- 

tributions. Thus we can summarize these two last sec- 

tions by saying that the large N meets in a very simple 

way all the known theoretical constraints to the SM 
Higgs sector, like the low-energy theorems, unitarity, 

the saturation property and the ET. 

5. Numerical results for the LHC 

The main practical application of the approach de- 

scribed above is of course the description of the LHC 
phenomenology. For this reason it will be used in this 
section to obtain predictions in terms of the renormal- 

ized Higgs mass under the hypothesis that the MSM 

provides the right model for the electroweak symmetry 
breaking. In particular we will concentrate on Z”Zo 
pair production, since this final state is the most sensi- 

ble to the Higgs resonance properties and at the same 
time gives rise to a very clear experimental signature. 

We consider both final gauge bosons decaying into 

the cleanest leptonic channels: Z” -+ e+e-, p+,u-. 
Indeed, we have obtained the number of these events 

as the total number of Z”Zo pairs times the branch- 
ing ratio 0.0044. We have computed the total Z”Zo 
number of events at the LHC with the help of the 
Monte Carlo VEGAS code [ 161. In order to relate the 
subprocesses cross sections to the pp initial state, we 
have used the effective W approximation [ 171 (which 
is based on the Weizsacker-Williams approximation 
[ 181) and the MRSD [ 191 proton structure functions, 
which are in good agreement with recent experimental 
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Total number of Z”Zo events at LHC decaying to the cleanest leptonic decays (e,p), in the large N limit of the SM. We have set the 
following kinematical cuts on the final Z” bosom: @” = 5 TeV, p2 = 300 GeV, $” = 2. To illustrate the effect of changing the 
renormaIized Higgs mass M in &. (IS), we have chosen three typical values. The contributions from different initial subprocesses are 
shown explicitly, although those events coming from other gauge boson pairs are listed together. The top quark mass has been fixed to 
rn, = 180 GeV. 

zuzo - zuzo 
wfw- - zuzo 
44 -t zozo 
gg --+ z”zo 

zuzo + wfw- - zozo 
all -+ Z”Zo 

M=lOOGeV 

0.09 
21.23 

21.33 
88.57 

M = 500 GeV 

2.58 
23.39 
53.83 
13.42 

25.97 
93.21 

M= I TeV 

8.95 
46.32 

55.27 
122.52 

results at HERA. 
The different subprocesses contributing to 2’2’ 

production that we have evaluated are 

variety of regimes, from weak to strongly interacting. 
The results are displayed in Table 1. 

z”zo -+ z”zo ) 6. Conclusions 

w+w- - z”zo , 

qq -+ z”zo , 

gg + z”zo . (27) 

All these channels have been calculated using the 
MSM Feynman rules within the large N limit, which 
modifies the Higgs boson mass and width according to 
our previous discussion. Consequently we have used 
the Higgs propagator given in Eq. (24)) so that M 
remains as a fkee parameter. We have evaluated most 
of the cross sections shown in Eq. (27) at tree level, 
although gluon-gluon fusion is calculated to one-loop 
[20], since it occurs via quark loops. As a conse- 
quence this cross section is quite sensitive to the top 
quark mass, that has been set to mt = 180 GeV. 

In order to compute the total number of events of 
the subprocesses in Eq. (27) we have set the follow- 
ing expected values for the LHC parameters: the pp 
center of mass energy, fi = 14 TeV and an integrated 
luminosity L = 3 x lo5 pb-‘. In addition, we choose 
the following kinematical cuts on the maximum Z”Zo 

invariant mass (am” = 5 TeV) , the minimum trans- 
verse momentum <p$ = 300 GeV) and the maxi- 
mum rapidity y;” = 2. Finally, in order to test the 
dependence on the renormalized mass parameter, we 
have chosen different input values for M: 100,500 and 
1000 GeV as defined in EQ. ( 14)) which cover a wide 

We have studied the main properties of the Stan- 
dard Model Higgs sector in the large N limit, i.e. for a 
large number of would-be Goldstone bosons, includ- 
ing the SU( 2) L x UY ( 1) interactions, keeping NA, N2 
and Ng’2 constant. By using this approximation we 
have confirmed the expected behaviour from other 
non-perturbative approaches, both in the weak and the 
strong interaction regime. In particular the Higgs mass 
saturation property. In addition we have been able to 
give a proper description of the Eggs resunance as a 
pole in the second Riemann sheet of the I = J = 0 
channel, thus having a well defined width. The corre- 
sponding partial wave has very good unitarity prop- 
erties and it is compatible with the low-energy theo- 
rems. Furthermore, the explicit introduction of gauge 
fields as well as the simplicity to implement this ap- 
proach allow us, in contrast to most of the previous 
approaches, to obtain the W+, W- and Z scattering 
amplitudes by means of very simple calculations, even 
without the help of the Equivalence Theorem, which 
nevertheless has been used to check our results. As an 
illustration we have applied the large N approxima- 
tion to estimate the number of Z”Zo events with the 
cleanest signature at the LHC, including all relevant 
backgrounds. The results can be found in the table. As 
it can be seen there, the sensibility of the number of 
events to the Higgs mass parameter is not very large. 
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However, it could by considerably increased with jet 
tagging, which could help to separate the more inter- 
esting pure fusion events from the background. 

We have therefore shown how the large N, despite 
its simplicity (only the propagator has to be changed), 
yields a consistent description of the Higgs sector non- 
perturbative problems, thus improving previous ap- 
proaches used to obtain predictions for the LHC. 
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