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Whichever turns out to be the real theory of gravitation, the corresponding low-energy efFective
Lagrangian will probably contain higher derivative terms. In this work we study the general con-
ditions on those terms in order to produce enough in8ation to solve some of the problems of the
standard Friedmann-Robertson-Walker cosmology in the absence of any inflaton field. We apply our
results to some particular scenarios where higher derivative terms appear in the efFective Lagrangian
for gravity, such as those coming from graviton (two) loops or integrating out ordinary matter (such
as the one present in the standard model).

PACS number(s): 98.80.Cq, 04.50.+h

I. INTRODUCTION

In recent years, the general physical idea of a period
of enormous inflation in the early history of our universe
has emerged as one of the most simple and successful
ways to solve many of the problems of the Friedmann-
Robertson-Walker cosmological scenario [1,2]. The list
of these problems includes flatness, the horizon problem,
and the origin of the density fluctuations needed to pro-
duce the current galactic structure.

Concerning the nature of the physical mechanism re-
sponsible for inflation there are many of them proposed
in the literature. However, none of them has been univer-
sally accepted. Typically they include the action of some
scalar field called the inflaton taking some vacuum ex-
pectation value. The corresponding energy density plays
the role of an effective cosmological constant which gives
rise to a nearly de Sitter phase of exponential expansion.
The concrete nature of the inflaton field depends on the
different microphysics models considered.

In this paper we deal with another kind of approach
based on the possibility of having inflation without any
inflaton Geld. This possibility was envisaged by Starobin-
sky some time ago [3]. Even before the inflationary
paradigm was established, this author discovered that the
addition of some terms to the Einstein equation of motion
gives rise to de Sitter spaces as solutions. In fact those
terms can be obtained in the effective action for grav-
ity as the result of integrating out conformal &ee matter
Gelds. The possibilities for the Starobinsky mechanism to
produce successful inflation were studied by Starobinsky
himself and by Vilenkin in [3,4]. More recently it was
realized by the authors [5] that the standard Einstein-
Hilbert action supplemented with a six derivative term
gives rise to a modified equation of motion supporting de
Sitter solutions. Moreover, the introduction of this term
is not arbitrary at all but is necessary for the renormal-
izability of the efFective low-energy theory of gravitation
at the two-loop level [6].

Whatever turns out to be the most fundamental theory
of gravitation (such as superstrings or any other), it is
clear that at low energy it must lead to the standard

Einstein-Hilbert Lagrangian proportional to the scalar
curvature B which has two derivatives of the metric g p
and therefore leads to graviton scattering amplitudes of
the order of the external momenta over the Planck mass
M~ squared.

This is a good approximation at low energies, but when
higher energies are considered, higher derivative terms
will in general appear in the efFective gravitational La-
grangian. These terms will be afFected by adimensional
constants and the necessary M~ factors depending on
the dimension of the operator. The adimensional con-
stants play a double role: first they carry the information
about the underlying theory of gravitation; second they
will absorb the divergences that appear when quantum
corrections; i.e. , loops are computed. with the effective
Lagrangian. These loops can contain matter fields, like
in the Starobinsky case, or gravitons (together with the
corresponding ghosts) as happens in the model consid-
ered in [5], or whatever.

This scheme has many analogies with the phenomeno-
logical Lagrangian approach proposed by Weinberg [7] for
the description of the low-energy hadron interactions and
further elaborated by Gasser and Leutwyler [8], i.e. , the
so-called chiral perturbation theory (yPT). This tech-
nique has also been applied to the parametrization of the
scattering amplitudes of the longitudinal components of
the electroweak bosons at the TeV scale [9]. More re-
cently [5,10] the same philosophy has been proposed to
describe the low-energy action for gravity [11].

At this point a natural question arises: which are the
new higher derivative terms that one must include in the
low-energy effective pure gravity Lagrangian' In princi-
ple, any general covariant combination of scalar curvature
and the Ricci and Riemann tensors B, B p, and B p~@
should be included. For example, one has three possible
independent four derivative terms that can be written
as B2, B~~B p, and —4B ~~gB~~ p+16B ~B p

—4B .
The third term is a total derivative related with the Euler
class of the space-time manifold.

In the general case we will assume the action for gravity
to be the space-time integral of an arbitrary local analyt-
ical scalar function of the scalar curvature and. the Ricci
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and Riemann tensors added to the standard Einstein-
Hilbert action or, in other words,

Note however that, in principle, the effective action
for gravity could depend also on higher covariant deriva-
tives of the Riemann and Ricci tensors and the curvature
scalar and contain nonlocal terms but these possibilities
will not be considered here.

As discussed above, in this work we are interested in
studying the possibility of having inflation without the
introduction of any inflaton Geld. Therefore we can start
studying the precise conditions to be required on the
function Ii appearing in the action in Eq. (1) leading
to de Sitter space-times as solutions of the corresponding
equation of motion. Of course, it is clear that this is not
the only possibility for having inflation since it should be
enough with the much more general condition H & —H
(with H being the Hubble parameter). However, to start
with, we will consider first this kind of simple solution
and we will discuss the general case at the end of Sec. III.

The physical meaning of these nonperturbative solu-
tions (such as the de Sitter solution) which can eventu-
ally appear in the modiGed Einstein-Hilbert action but
not in the Einstein-Hilbert action itself (for null cosmo-
logical contant) has been questioned in the literature.
For instance, in [12] it is argued that these solutions do
not appear in a correct perturbative treatment. How-
ever, we think that this is not necessarily the case since
there are other similar scenarios where these nonpertur-
bative solutions have a well-deGned physical meaning.
This is the case, for instance, of the above-mentioned
yPT. There, the higher derivative terms added to the two
derivative one (which would be analogous to the Einstein-
Hilbert Lagrangian) not only modify in a perturbative
way the pion scattering amplitudes; in addition, they give
rise to other well-known nonperturbative solutions called
skyrmions which cannot be obtained with the two deriva-
tive term alone. Moreover, the skyrmion has been shown
to provide a phenomenologically consistent description of
baryons in the celebrated paper by Adkinds, Nappi, and
Witten [13]. Therefore we understand that the phys-
ical meaning of the possible nonperturbative solutions
appearing when higher derivative terms are added to the
Einstein-Hilbert action should not be a priori discarded.

The possibility of having de Sitter solutions coming
&om generalizations of the Einstein-Hilbert action which
are analytical functions on the scalar curvature has been
considered by Harrow and Ottewill [14] who have studied
the existence and stability of homogeneous and isotropic
cosmological solutions in this case. On that score our
work will follow this approach extending it for arbitrary
analytical functions on the Riemann and Ricci tensors
and the scalar curvature. On the other hand, it is well
known [15] that some of these higher derivative models
can be related to the usual inflaton ones via conformal
transformations. Specifically, gravity Lagrangians which
are arbitrary functions of the scalar curvature are confor-
mally related to that of Einstein's gravity plus a scalar

Geld whose self-interactions depend on the speciGc form
of the higher order terms. However, this is not the case
when the modiGed gravity Lagrangian is an arbitrary
function of the Riemann and Ricci tensor and the scalar
curvature as we are considering here. In this case it is
also possible to relate it to Einstein's gravity plus matter
fields, but the matter sector includes not only scalar but
also tensor fields [16].

II. EXISTENCE
QF (ANTI —)de SITTER SOLUTIONS

For maximally symmetric space-times it is always pos-
sible to write the Riemann tensor just in terms of the
scalar curvature:

1

n(n —1)
R(g ~gpss

—g~~gp~) (2)

where n is the dimension of space-time. Therefore, we
can rewrite the action integral in Eq. (1) in terms of the
scalar curvature only:

S~= d xQ—g~ —— R+G(R)
~16vr

for some well-defined analytical function G to be ob-
tained from the original I" function in Eq. (1).

The equation of motion corresponding to this action
can be found to be

MJ, t' 1
16' ( 2 j 2

+
~

R p
— gpR ~

= ——gpG(R) +—R pG'(R)

+g paG'(R) —G'(R),.p, (4)

where a prime denotes derivative respect to R. In order
to find the condition for having (anti —)de Sitter space-
times as solution of this equation it is important to re-
member that these are maximally symmetric space-times
of constant scalar curvature B. Therefore, in this case the
above equation of motion reduces to

M2~ R = 2G(R) —RG'(R),

which is the condition for having (anti —)de Sitter solu-
tions. In principle, this equation can have zero, one, or
several solutions. In the first case no de Sitter inflation
is possible but in the other cases one or more de Sitter
phases can be present. It is immediately seen &om the
equation above that the addition of quadratic terms to
the Einstein-Hilbert action [i.e. , I'" = nR + PR~ R~" +
pR p ~R»~, or in other words G(R) oc R ] does not
lead to any solutions diQ'erent &om B = 0 which cor-
responds to the Minkowski space-time. This, of course,
does not mean that those terms cannot lead to inflation,
i.e., an expansion phase where H & —H, but only that
they cannot give rise to de Sitter inQationary solutions.
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III. ROBERTSON-WALKER PERTURBATIONS

Let us consider now the standard Robertson-Walker
metric

d7. =dt —a (t) ~
+r d8 +r sin Hd(P

~
(6))

L = Lo+ Lib+ L2b+ O(b ),
OL = Li + Liib + Li2b + O(b' ),
OL

OH
= L2+ L2ib+ L22b + O(b'))

where we have defined the coeKcients

(12)

(13)

(14)

(we will follow the notation convention of Weinberg's
book [17]), where k = 1, 0, —1 corresponds to a closed,
flat, or open space and a(t) is the universe scale pa-
rameter. For the sake of simplicity, in the following we
will concentrate in the Bat or k = 0 universe. This is
not in general a maximally symmetric space-time but
it includes a particular case which indeed is, namely,
a(t) = a(to) exp[HO(t —Co)]. This fact makes it possible
to use this metric to study small perturbations around
the (anti —)de Sitter solutions found in Eq. (5) and, in
turn, the perturbative analysis will provide an estima-
tion of the duration of each inHationary de Sitter period
as we will see later on. Proceeding in this way we first
note that the Riemann tensor for this metric has only the
following six nonvanishing independent components:

R'"t„——R tg
——Rtr t8 tP

a (7)

(8)

Since only these functions of a and its derivatives will
appear in the action it is then more useful in practice
to work with them as new variables. Thus we define
b(t) = in[a(t)], H(t)—:b(t) = a/a, and H(t) = b(t) =
ii/a —a /a . In terms of the Hubble parameter H(t)
that we have just defined, the (anti —)de Sitter space-time
corresponding to a(t) = a(to) exp[HO(t —to)] is simply
H = Ho and the action integral in Eq. (1) reads

SG. oc dte L H H.

3L —3H —— +3H . +9H' . +6H-BL d OL OL 2BL d BL
OH dtOH gH gH dtgH

d BL+ . = 0. (10)
BH

This equation obviously possesses the solutions H(t) =
Ho corresponding to the (anti —)de Sitter space-times
found in Eq. (5). In order to study the stability of these
solutions we must consider the behavior of small pertur-
bation around them: that is,

H (t) = H, + b(t), H(t) = b(t).

Expanding L(H, H) and its derivatives to the first or-
der in b we find

Here a global volume factor has been extracted and
the function L(H, H) which is obtained &om the func-
tion E in Eq. (1) includes the Einstein-Hilbert part of
the Lagrangian. The equation of motion for the Hubble
parameter H obtained &om the action above reads

Lo ——L(Hs, 0),
M

Li —— (Ho, 0),

OL
L2 —— . (HO, O),

OH
B~L

Lii —— (Ho, 0),

02L

BHBH
82L

(Hp, 0).

Finally, substituting these expansions in Eq. (10) and
neglecting terms of second order we obtain the linearized
equation for b(t), which can be written as

1
3(Lp —HOLi + 3HOL2) + —W+ X = 0,

3Hp dt
(16)

where T stands for

X = L226 + 3HQL228 + b(6L2 + 3HoLi2 —Lii). (17)

Now the condition in Eq. (5) for having (anti —)de Sitter
solutions can be rewritten as a condition on Hp

L p —HpI i + 3HpLg ——0.

The resolution of the linearized equation for b (t)
[Eq. (16)] around each solution Ho' of Eq. (18) simply
becomes the resolution of equation W = 0 whose solutions
are any linear combination of modes exp t/~ with

3H"' &9H"'
p ~ p

2 ( 4

y (&/'2)

L(~)
)11

(6L '+3H' L '
L(') p 12

22

Here i runs over the number of real solutions of
Eq. (18). The stability of these inflationary solutions
is given by the signs of v('). When both are growing
modes, i.e., w(') & 0, the corresponding solution is unsta-
ble to any perturbation. If both modes are decreasing,
i.e., w(') & 0, the solution is stable and, as a consequence
of that, the inflationary phase will be endless (at least if
possible tunneling effects are neglected). Equation (19)
guarantees that a stable mode is always present for de
Sitter Hp & 0 solutions. Therefore, the kind of phys-
ically interesting solutions are, in principle, those with
one stable and one unstable mode. This is so because
they assure that if the universe had started in this de
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Sitter phase it could have decayed into an acceptable so-
lution at late times. On the other hand, in a more general
case, if the initial conditions are arbitrary, at least there
exists an area in the phase space where the solutions sat-
isfy H ) —H, i.e., the criterion for the existence of
infIationary solutions. In addition, the value of w~'~ for
the unstable mode gives an estimation of the duration
of the corresponding de Sitter phase and, in turn, of the
number of e foldings N, ' produced during this period:

perturbations to this de Sitter solution. Equation (20)
gives the number of e foldings produced before the uni-
verse leaves this state of exponential growing; N, 4.81
is immediately obtained. It is important to notice that
N, does not depend on the o. coefIicient preceding it.
Therefore, the addition of the six derivative term to the
Einstein-Hilbert action considered here does not seem to
produce enough inflation to solve the problems of the
standard cosmology.

H t d~=H"~c."& (20) V. EFFECT OF MATTEH.

In general this is a lower bound to the number of e
foldings produced during the whole inflationary era, since
the end of the de Sitter phase does not mean the end of
inBation. The duration of the whole infIationary phase
depends, in the general case, on the initial conditions
and the dynamics of the model. Therefore it should be
estimated in detail in the difFerent particular cases.

With the simple method described above it becomes
very easy to decide if some given generalized effective ac-
tion for gravity gives rise or not to exponential inflation-
ary solutions and, in that case, to obtain an estimation
of the change of the scale produced in the correspond-
ing infIationary phase. In the next sections we will apply
the method to two different scenarios which have been
considered in the literature in difFerent contexts.

IV. TVfO-I OOP COUNTEKTEB. M

The first example we will consider is that of [5].
There the authors studied the minimal consistent effec-
tive low-energy two-loop renormalizable Lagrangian for
pure gravity; this Lagrangian is shown to contain a six
derivative term [6] added to the usual Einstein-Hilbert
one:

This model is based on the semiclassical Einstein equa-
tions

R„„—rj„„R=— 87rG(T—„),1
Pv 2 Pv (24)

where (T~ ) is the vacuum expectation value of the stress
tensor of a number of massless conformally invariant
quantum fields with different spin values. As is well
known this vacuum expectation value will be divergent in
general and some regularization method will be needed
to give it sense. These divergences afFecting (T„) have
been computed in the literature and cause the appear-
ance of fourth order operators at the leading adiabatic
order (see [18] for a very coinplete review). The corre-
sponding higher order terms in the matter Lagrangian
may be considered also as part of the gravitational ef-
fective Lagrangian since they are pure geometric objects,
i.e., they depend only on the standard Riemann and Ricci
tensor and the curvature scalar, but not on the matter
fields themselves. In dimensional regularization and us-
ing the fact that —4B ~~gB"/~ p+ 16K ~B p

—4B2 is a
total divergence in four dimensions, this divergent con-
tribution to the effective Lagrangian can be written for
massless fields as

16' M~~

The function I (H, H) appearing in Eq. (9) is obtained
just by rewriting Eq. (21) for the flat Robertson-Walker
space:

with

, I

———
I
a~(~)

(4vr)' (e 2 )

a2 (x) = Pi R + pR„R"",

(25)

(26)

L(H, H) = ~(H+2H ) —24 2 [(H+H ) +H ].
N„
180

N„
60

Ngh N %g N„
90 60 30 20

N„Ng, 7N„Ngh
20 10

+
30 30

(27)

(28)

18M~2 2 72o.
H =0 (23)

with the obvious solutions Ho —— 0 and Ho—MJ4, /(64vro. ). Therefore, there exists only one inflation-
ary de Sitter period provided o. is negative. On the other
hand, we find one stable and one unstable mode for the

By solving Eq. (18) we find the inflationary periods
produced as a consequence of the introduction of this
higher order term. The equation reads

where p, is the Euler constant and we have assumed N„
scalars, Ngh ghosts, N„neutrinos, Ng Dirac fermions,
and N„vectors fields to be present.

Now we have to deal with the problem of the divergent
coefIicient multiplying these terms. In principle, one may
estimate in a heuristic way the value of the corresponding
renormalized coefficients by performing the substitution
1/e —p, /2 —i 1n(M~/M) which is nearly equivalent to
the assumption of integrating the matter fields modes
&om some in&ared cutoff M to the M~ scale. Thus the
corresponding renormalized effective Lagrangian will be
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(M& l
~
u. (*).16'. 4

(29)

(Tpv)ren = P2 Hpv + p Hpv + Hpv )
(~) (3) (4) (3o)

where

On the other hand, the finite remainder (T~„)„„is in
general quite difBcult to compute. However, in the case of
conformally Hat spaces and quantum fields which are also
conformally invariant, (T„„)„„canbe exactly computed
out of the knowledge of the trace anomaly and it renders

As we did in the previous example we use Eq. (18) in
order to get the inQationary periods and we obtain, in
this case,

M~ 2 4
2

Ho+ pHo = 0,
8m

whose solutions are simply HD ——0 and Ho ——M&/(8m p).
Thus we find again only one de Sitter phase provided p
is positive. Finally Eq. (20) will provide the number of e
folds during this phase. For an in&ared cutoff M 100
GeV Eq. (20) yields

f l H„„=2R,„„—2g„O R ——g~„R + 2RR„„, (31) 1 3 9 6p
N, 2 4 8.92pi + 2.97' + 36p2

(4o)

—g bg&" (33)

Note that in general ( )H" cannot be obtained by
varying a local action, although several nonlocal actions
have been proposed which lead to this term. In spite
of this, in the case we are considering, i.e., conformally
flat space, a local action can be found [19] which can be
written in terms of the Hubble parameter as

I'= dte H . (34)

It is then possible to write a matter Lagrangian in the
case of conformally flat space which leads to (T&„)„„and
in terms of the Hubble parameter takes the form

LM = P2(H + 2H ) + PH,

with the coefficients P2 and p given by

(35)

1 1
p2 =—

144m2 120
(N„+ 3N„+ 6Nf, —18N„—2Nsh))

(36)
1 1 / 11

p = —
~

—Nee ——N„—11Nf, —62N„+ 2Nsi, ~.8'' 360 q 2

(37)

Therefore we can write the function L(H, H) in Eq. (9)
including the gravitational and matter sectors as

6M2
L(H, H) = L~+LM = (H+2H )+ pH

16m

+36, ln
~

~ p, + p, (H + 2H')'

+12, ln
~ ~

&(H'+ 3HH'+ 3H').
4n. 2 qM j

(38)

(3) cr cr7 2H„= R R„——RR„„——g„„R R + —g„„R .
3 2 4

(32)

( )H„ is a border term and will be omitted. It is possi-
ble to derive the first term above ( )H„&om an action
integral in this way:

One interesting case to apply the above results to is
the standard model of elementary particles interactions
based on the gauge group SU(3)~ x SU(2)1, x U(1)y. ,

we have N„= 4, N = 3, Nf ——21, N„= 12, and
Nsh = 12. By substituting for these values in Eqs. (39)
and (40), one obtains Ho —— 1.08M~ and N, 44.
Note that the material content of the standard model
is not strictly speaking conformal matter, since many di-
mensional parameters appear in the corresponding La-
grangian. However, at the high energies which we are
interested in, these parameters can be neglected and all
the standard. model particles can be considered as mass-
less. In addition we are also ignoring the e8'ect of the
gauge interactions but still this could be a not so bad ap-
proximation at higher energies because of the asymptotic
freedom property of the strong interactions. In a similar
fashion, other models with additional matter content can
also be considered.

So far we have considered only the possibility of hav-
ing de Sitter in8ation; now we will study the general
case. To determine the set of initial conditions required
to have a period of in8ation we need to study the specific
phase space of this model. The equations of motion for H
[Eq. (10)] corresponding to the Lagrangian of this model
[Eq. (38)] are third order ordinary difFerential equations.
However, since the time variable does not appear explic-
itly in the action we can reduce the degree of the equation
by finding a constant of motion. This constant is given
by

ss( BL 20L d M OL

gH gH dt gfj BH )
= const. (41)

3H —18HH —0.12H + 0.10H'
6H ) (42)

Consequently the equations of motion for H obtained
from any generalized action (provided it is a scalar func-
tion on the Riemann and Ricci tensors and the scalar
curvature but not on their derivatives) can always be
written as a second order autonomous equation.

Taking the value of the constant equals zero we find the
following second order equation for the standard model
parameters:
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FIG. l. Qualitative picture of the phase map correspond-
ing to Eq. (42). The dotted line corresponds to the curve
0= —0.

where we have taken M~ ——1. The corresponding phase
map is shown in Fig. 1. We first note the de Sitter solu-
tion corresponding to H = 1.08 and H = 0. The dotted
line corresponds to the curve H = —H which separates
the in8ationary region &om the noninQationary one as
we discussed above. We see that there exists a large
region of initial conditions which gives rise to inflation.
On the other hand, we must mention that at late times
any solution either grows indefinitely, as it occurs with
those placed to the right of the de Sitter solution, or falls
into the Minkowski solution allowing, at least in princi-
ple, a matching with the standard Friedmann-Robertson-
Walker cosmology. Near the origin, for H (( M~ and
H (( M&~, Eq. (42) reduces to

3H2 —0.12H2

6H

However, this solution is valid only for values M (&
H &( M~ where M is the in&ared cutoff since the ap-
proximations we have done in the above computations
break down at low energies. In particular, for ener-
gies lower than M the matter fields degrees of &eedom
should appear explicitly modifying the evolution equa-
tions and particle masses and gauge interactions cannot
be neglected any more.

In any case, the numerical results obtained can be used
to make an estimation of the number of foldings [as de-
fined in Eq. (20] for general initial conditions. Of course
this number depends on these initial conditions. How-
ever, in order to have an idea of the typical orders of
magnitude, we have considered some examples. For in-
stance, for H = 1 and H = 0 we obtain N, 135 and
for H = 0.5 and H = 0, N, 22. Thus, by looking at
Fig. 1, one can conclude that there exists a wide region
of initial conditions which give rise to a large expansion
factor inside the inQationary region H ) —H .

Apart &om having a large enough number of foldings
one should also find a successful exit into the standard
hot big-bang model. As discussed above, the correspond-
ing detailed analysis cannot be done in the &amework of
the simplified model studied here since it applies only to
energies larger than the in&ared cutoff M. Moreover, a
detailed study of a generalization of the model consid-
ered above done in [20] showed that, for the values of
the parameters that describe the standard model mat-
ter, the Quctuations in the conformal background gravi-
tational field give rise to density perturbations which are
too large. However, this study does not include explicitly
the effect of matter fields and it is not completely clear
if its conclusions apply to the case of the standard model
matter coupled to classical gravity. In particular the con-
formal invariance assumed in the analysis done in [20] is
lost at low energies due to the masses and the running of
the couplings discussed above.

Its phase map is represented in Fig. 2. This equation
possesses the exact solution VI. CONCLUSIONS

H(t) = H(to) cos
l

M~
327[' )

(44)

H(Mp)

0.001

H(Mp x10 )

FIG. 2. Qualitative picture of the phase map corresponding
to Eq. (43).

In this work we have studied the possibility of having
a phase of de Sitter inQation starting from an effective
Lagrangian for gravity which is an arbitrary function of
the Riemann and Ricci tensors and the curvature scalar.
Therefore, our main assumption is that there exists some
epoch in the early history of our universe where its evo-
lution can be described in a classical way but with an
unknown effective action for the gravitational field. We
have set the precise conditions on this action for such an
exponential expansion to take place. We have shown that
it is a rather common phenomenon in four dimensions,
even without adding a cosmological constant, since for a
generic action Eq. (5) may have solutions different from
zero.

We have also studied the stability of the de Sitter so-
lution and estimate its duration in classical terms. With
these formal tools we have considered two particular
models giving rise to higher derivative terms for the grav-
ity action.
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The 6rst case to which we have applied our gen-
eral method is the study of the effect of including the
six derivative term needed to renormalize two-loop pure
quantum gravity. With this new term added to the stan-
dard Einstein-Hilbert action we 6nd that an exponential
de Sitter solution appears with one unstable mode. The
corresponding inBationary phase produces 4.8 foldings in-
dependently of the concrete value of the six derivative
term coupling. Thus we can conclude that this new term
does not seem to produce inHation enough to solve any
of the problems of the standard cosmology.

As a second example we have applied our general
method to study the possibility of having inQation driven
by the terms induced in the effective low-energy action
for gravitation by integrating out the matter fields above
some cutoff M. In particular we have found the inter-
esting result that the standard model matter produces,
by itself, an inflationary de Sitter phase with N, 44.
Moreover, we have studied in detail the phase space of
this model and we concluded that there is a wide re-
gion of possible initial conditions (outside the pure de
Sitter solution) which also gives rise to an important
number of foldings, defined according to Eq. (20), and
with H ) —H in most of the time of the correspond-

ing evolution. This last remark is important concerning
the possible solution of the horizon problem. Neverthe-
less, from the work in [20], we know that this model could
produce too large density fluctuations if conformal invari-
ance is assumed to be a good approximation to describe
the standard model coupled to gravity even at energies
below the infrared cutoff although this is not certainly
the case.

In conclusion we consider that, in absence of a fun-
damental theory of gravitation, the possibility of having
inBation without the somewhat artificial artifact of the
inflaton 6eld should not be ruled out. Moreover, the re-
sults found here for the case of the standard model mat-
ter coupled to classical gravity seem to suggest that it
is worth studying in depth the dynamics of this system
that, Anally, is the only one that we are sure is realized
in nature. Work is in progress in this direction.
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