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aDepartamento de F́ısica Teórica I, Universidad Complutense de Madrid,
E-28040 Madrid, Spain
bInstituto de Ciencias del Espacio (ICE/CSIC) and
Institut d’Estudis Espacials de Catalunya (IEEC), Facultat de Ciències,
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1 Introduction

Since observational evidence of the accelerated expansion of the Universe was discovered [1],
the cosmological evolution as predicted by General Relativity (GR) has been set in doubt.
The reason is that a stress-energy tensor possessing strange features needs to be included
in the Einstein’s equations in order to account for this cosmic acceleration. This exotic
cosmological fluid is usually referred to as dark energy (DE). In its simple form it is given
by a cosmological constant with equation of state pΛ = −ρΛ. However, instead of filling the
Universe with exotic fluids, a reasonable hypothesis consists in modifying the cosmological
field equations assuming alternative geometrical theories to GR. This approach has received
the name of modified gravity theories and has drawn enormous attention in the last years [2].

Some examples are Lovelock theories, whose field equations are second-order differen-
tial equations in the metric [3]; Gauss-Bonnet theories inspired in string theory that include
a Gauss-Bonnet term in the Lagrangian [4]; scalar-tensor theories [5] or vector-tensor the-
ories [6], in which gravitational interaction is not only mediated by the standard spin-2
graviton but also by scalar or vector modes respectively; metric theories derived by extra di-
mensional theories [7]; supergravity models [8], disformal theories [9], Lorentz violating and
CPT breaking models of gravity [10]; or the so-called f(R) theories, in which our work will
be focused. f(R) theories consist in modifying the Einstein-Hilbert Lagrangian by adding
an arbitrary function of the Ricci scalar R (for recent reviews see [11]). From this approach,
the equations derived from the new action are to be expected as a refinement of the stan-
dard Einstein’s equations able to reproduce the correct predictions of GR while explaining
the cosmic acceleration. These theories may have strong effects on small scales, but if some
restrictions are imposed, they are able to reproduce the cosmological history while being
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compatible with local gravity tests [12]. It is worth mentioning that the Einstein’s equations
with cosmological constant Λ are a particular case of these theories with f(R) = −2Λ.

In fact, the problem with the accelerated expansion of the Universe follows immediately
from the consideration of the Friedmann’s equations obtained assuming a Robertson-Walker
(RW) cosmological model and a perfect fluid moving along the geodesic congruence followed
by the fundamental observers. It is well-known that stress-energy tensors corresponding to
standard fluids cannot be responsible for the accelerated expansion. From a more general
point of view, the Friedmann’s equation involving the acceleration of the scale factor re-
sults from the Raychaudhuri’s equation assuming GR. This equation provides the expansion
rate of a congruence of timelike or null geodesics (see [13–17] and recent review [18]). The
Raychaudhuri equation plays an important role in the demonstration of the singularities the-
orems proved by Hawking and Penrose [13]. It is usually interpreted that the contribution of
space-time geometry to this equation represents the attractive (or non-attractive) character
of gravity. An analysis of this contribution [19] showed its geometrical interpretation as the
mean curvature [20] in the direction of the congruence. Besides, it can easily be verified
that for a RW cosmological model with a negative deceleration parameter this contribution
is positive, i.e. the mean curvature in the direction of the fundamental congruence turns out
to be positive [19]. Hence, the attractive character of gravity vanishes. From this analysis, it
is clear that the accelerated expansion of the Universe may be in conflict with the attractive
character of gravity.

In GR, the attractive character of gravity is assured by assuming the usual energy
conditions [13, 14]. Therefore, a positive contribution to the Raychaudhuri equation from
space-time geometry is not attainable in GR provided that these energy conditions hold.
Nevertheless, this does not need to be the case in the context of modified gravity theories.
In these theories, even if the usual energy conditions are assumed, a positive contribution
to the Raychaudhuri equation from space-time geometry may be obtained. Moreover, an
upper bound to the contribution of space-time geometry can be provided both in terms
of the gravitational model and the metric under consideration. Using this upper bound
and assuming the usual energy conditions, throughout this investigation we shall derive
restrictions to f(R) models in order to constrain their cosmological viability.

Energy conditions have been widely studied in the literature for different modified grav-
ity theories. The authors of [21] generalized energy conditions for a perfect fluid in f(R)
theories by analogy with GR. In [22], the extended energy conditions of f(R) are used to de-
rive energy conditions in Brans-Dicke theories with a vanishing kinetic term in the Lagrangian
using the equivalence between both theories. The energy conditions have also been studied
for f(R) theories with a non-minimal coupling to matter [23]. In [24], the same procedure
is applied to Gauss-Bonnet theories. In [25] and [26], the authors considered Gauss-Bonnet
theories with non-minimal coupling to matter and derive the corresponding energy condi-
tions. All the aforementioned references followed the formalism first developed in [21]. This
generalization of the energy conditions, as the authors of [21] themselves first acknowledged
remains doubtful since there is no natural motivation but only an analogy with GR. This
extension is in fact only motivated when the new terms appearing in the field equations are
identified with physical fields. Nevertheless, these new terms may be understood as possess-
ing only a geometrical meaning. Thus, there is no reason to assume any energy conditions
on these terms.

Moreover, if these new energy conditions are assumed, the mean curvature in every time-
like direction is non-positive by construction and, as already mentioned, for a RW space-time
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experiencing an accelerated expansion implies necessarily a positive mean curvature in the
direction of the fundamental congruence. In particular, the stress-energy tensor associated
with a cosmological constant Λ does not satisfy the usual energy conditions. This fact shows
by itself the limitations of previous investigations assumptions in the most trivial modified
gravity Lagrangian beyond pure GR.

This paper is organized as follows: first, in section 2, we summarize the standard energy
conditions as considered in GR and then the role of the Raychaudhuri equation in the theo-
rems of singularities is briefly discussed. Also, the procedure to be developed in the following
section is here sketched. Section 3 is devoted to introduce the field equations for f(R) theories
in the metric formalism as well as the commonly assumed conditions for f(R) models to be
cosmologically viable. Then, in section 4, we assume the energy conditions in the framework
of f(R) theories and present the inequalities that are obtained. We shall proceed by studying
configurations of constant scalar curvature in section 5. These configurations will enable us
to impose some constraints on the parameters of several relevant f(R) models in order to
get a positive contribution to the Raychaudhuri equation. Finally, we conclude our analysis
by presenting our conclusions. In an appendix, we rederived the results obtained in f(R)
theories using the alternative representation of these theories as a Brans-Dicke model and we
arrive at the same conclusions.

Throughout this study, we use a metric signature (−,+,+,+) and our definition of the
Riemann tensor is:

R d
abc ≡ ∂bΓdac − ∂aΓdbc + ΓeacΓ

d
eb − ΓebcΓ

d
ea , (1.1)

Rac ≡ R b
abc holds for the Ricci tensor and R = Raa is the Ricci scalar. With this convention

the usual Einstein’s equations yield:

Rab −
1

2
Rgab =

8πG

c4
Tab . (1.2)

From now on, we shall adopt c = G = 1. Furthermore, the stress-energy tensor corresponding
to a perfect fluid is:

Tab = ρ ξaξb + p (gab + ξaξb) . (1.3)

2 Energy conditions in General Relativity

The Raychaudhuri equation for timelike geodesics can be expressed as [14, 15]

dθ

dτ
= −1

3
θ2 − σabσab + ωabω

ab −Rabξaξb , (2.1)

where θ, σab and ωab are respectively the expansion, shear and twist of the congruence of
timelike geodesics generated by the tangent vector field ξa and τ is an affine parameter. On
the other hand, the analogous equation for null geodesics becomes [14, 16]

dθ̂

dλ
= −1

2
θ̂2 − σ̂abσ̂ab + ω̂abω̂

ab −Rabkakb , (2.2)

where ka is the tangent vector field to a congruence of null geodesics and λ is an affine
parameter. Let us recall that (2.1) and (2.2) are geometrical identities, thus they hold
independently of the gravitational theory assumed.
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In this investigation we are interested in the contribution of space-time geometry to the
previous equations, i.e., −Rabξaξb and −Rabkakb. If a particular form for the metric tensor
is assumed a priori, the Ricci tensor can be determined and then those contributions can be
directly studied as it is the case for a RW metric [19] without considering any underlying
gravitational theory. However, the metric tensor is in general unknown from the beginning,
thus an expression for the Ricci tensor is not at our disposal. In the latter scenario, the
problem can be nonetheless tackled by using the field equations to obtain information about
−Rabξaξb and −Rabkakb. This procedure leads to considering conditions to be imposed on the
stress-energy tensor Tab, the so-called energy conditions. Let us thus revise these conditions
and some of their implications in GR both for timelike and null vectors.

2.1 Timelike vectors

The energy density of matter as measured by an observer with velocity ξa, is Tabξ
aξb. It is

reasonable that this density would be non-negative. This requirement is known as the weak
energy condition (WEC)

Tabξ
aξb ≥ 0 WEC . (2.3)

Moreover, the dominant energy condition (DEC) ensures that the speed of the flux of energy
is less than the speed of light, yielding

Tabξ
a T bcξc ≤ 0 DEC , (2.4)

which expresses that the flux of energy, i.e. −T abξa, is a timelike vector where the minus
sign appears because we have chosen signature (−,+,+,+). Furthermore, we are mainly
interested in the expression Rabξ

aξb. Using the usual Einstein’s equations (1.2) and the
subsequent relation between the Ricci scalar and the trace of the stress-energy tensor, i.e.
R = −8πT , we obtain

Rabξ
aξb = 8π

(
Tab −

1

2
Tgab

)
ξaξb

= 8π

(
Tabξ

aξb +
1

2
T

)
.

(2.5)

It is customary to assume the positive sign of the r.h.s. of this equation since a distribution
of standard matter would not result in a stress-energy tensor with pressure so large and
negative as to make this member negative. This statement can be understood after replacing
expression (1.3) in (2.5). Hence, stress-energy tensors for standard matter fluids satisfy the
so-called strong energy condition (SEC)

Tabξ
aξb ≥ −1

2
T, SEC . (2.6)

It is known that both dust matter and radiation satisfy the SEC. For a discussion about cases
where this condition does not hold see [13]. In particular, a stress-energy tensor corresponding
to a cosmological constant Λ fluid does not fulfill the SEC. We will discuss this case at the
end of the section to avoid losing continuity in the discussion. Therefore, the SEC requires

Rabξ
aξb ≥ 0 , (2.7)
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which may be interpreted, because of asserting a non-positive contribution to Raychaudhuri
equation, as a manifestation of the attractive character of gravity. It follows that the mean
curvature [19, 20] in every timelike direction defined by

Mξa ≡ −Rabξaξb (2.8)

is negative or zero in GR provided that the SEC is assumed.
The usefulness of the Raychaudhuri equation in the singularity theorems is based upon

the following result: if one chooses a congruence of timelike geodesics whose tangent vector
field is locally hypersurface-orthogonal, then ωab = 0 for all the congruence (as a consequence
of Frobenius’ theorem [14]) is obtained. The term σabσ

ab is non-negative and whenever
Rabξ

aξb ≥ 0 is assumed, then

dθ

dτ
+

1

3
θ2 ≤ 0 , (2.9)

which implies

θ−1(τ) ≥ θ−1
0 +

1

3
τ . (2.10)

This inequality tells us that a congruence initially converging (θ0 ≤ 0) will converge until zero
size in a finite time τ ≤ 3/|θ0|, or in a reversed sense, if the congruence is initially diverging
θ0 ≥ 0 it was focused until zero size in the past. This result is important in proving the the-
orems concerning singularities of Hawking and Penrose [13, 14]. Very often it is claimed that
these theorems require energy conditions to hold, since for instance the SEC as we have just
seen implies Rabξ

aξb ≥ 0. However, these theorems are essentially mathematical theorems
independent of the gravitational theory. Energy conditions are necessary for these theorems
to hold if and only if GR is assumed. Otherwise, the requirement would be Rabξ

aξb ≥ 0 for
every non-spacelike vector. In section 4, we shall assume the usual energy conditions in the
framework of f(R) theories but the sign of Rabξ

aξb will remain in principle undetermined.

2.2 Null vectors

Let us now consider a congruence of null geodesics. Just by replacing ξa → ka in equa-
tion (2.5), one gets

Rabk
akb = 8π

(
Tab −

1

2
Tgab

)
kakb = 8πTabk

akb. (2.11)

Hence, the so-called null energy condition (NEC)

Tabk
akb ≥ 0 NEC , (2.12)

implies that Rabk
akb will be non-negative. NEC is fulfilled by continuity if the SEC is

assumed, but it is also fulfilled by imposing the WEC. Then, the assumptions for a congruence
of null geodesics to focus are weaker than those for a congruence of timelike geodesics sketched
above. Reasoning in the same way as before, if a congruence of null geodesics is initially
converging θ̂0 < 0 it will converge until zero size in a finite time τ ≤ 2/|θ̂0| or in the
reversed sense.

The convergence of timelike and null geodesics in a finite time — in the future or in the
past — is ensured in GR under the assumptions of the SEC and the NEC respectively. This
result is usually known as the geodesic focusing theorem [13, 14].
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2.3 Beyond General Relativity

If one considers a congruence whose tangent vector field is locally hypersurface-orthogonal,
this means that, on the one hand ωab = 0 and, on the other hand, the r.h.s. of the Ray-
chaudhuri equation for timelike geodesics (2.1), has only non-positive contributions of the
parameters of the congruence (−θ2/3 and −σabσab). If the observed acceleration of the Uni-
verse needs to be explained, a positive contribution of the space-time given by Mξa > 0 is
required at least for some directions ξa. This is unfeasible in GR if the SEC is satisfied as
can be seen from (2.7). This opens two ways of circumventing the unavoidable attractive
character of gravity in GR: either to suppose that the SEC is not satisfied or to modify the
Einstein’s equations. An analogous discussion may be done for null geodesics replacing the
SEC by the NEC.

In this work we shall consider the second scenario: the SEC will be located in a privileged
place with respect to the Einstein’s equations. We are thus assuming that standard matter
satisfies the SEC and that the possibility of a positive contribution to Raychaudhuri equation
through the mean curvature Mξa must be obtained from the f(R) modified field equations.
By proceeding in this way, an inequality involving Rabξ

aξb and terms depending on the
gravitational theory under consideration will provide us an upper bound to the contribution
of space-time geometry Mξa . This bound will allow us to derive some restrictions on the
f(R) models in order to get Mξa positive, or equivalently Rabξ

aξb negative.
As it was mentioned above, the cosmological constant stress-energy tensor does not

satisfy the SEC and should not be regarded as an stress-energy term but as a particular
f(R) = −2Λ model.

3 f(R) theories

Let us consider the total action

S = Sgrav + Smatter , (3.1)

i.e. a gravitational action plus a matter action term that includes all matter fields. The
modification of f(R) theories to GR consists in assuming Sgrav of the form

Sgrav =
1

16π

∫
(R+ f(R))

√
| g |d4x , (3.2)

where f(R) is an arbitrary function of R and g is the determinant of the metric. The variation
of (3.1) with respect to the metric tensor yields

Rab(1 + f ′(R))− 1

2
gab (R+ f(R))− (∇a∇b − gab�) f ′(R) = 8π Tab . (3.3)

where the stress-energy tensor is defined as

Tab ≡ −
2√
| g |

δSmatter

δgab
. (3.4)

Equations (3.3) are obtained in the metric formalism, i.e. the connection is assumed to be
Levi-Civita connection. f(R) theories have been proved to be able to reproduce the cosmolog-
ical history from inflation to the current accelerated expansion era. For instance, it has been
showed that the evolution of the Universe can be reproduced with certain f(R) functions [27].
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Let us remark here that equations (3.3) are fourth order differential equations. This
is the reason of some strong instabilities that arise for certain f(R) models, such as the
Dolgov-Kawasaki instability for the model f(R) = −µ4/R [28]. Moreover, there is a general
instability known as Ostrograski instability associated with Lagrangians that contain non-
linear second derivatives terms. However, it has been proved that one can avoid Ostrograski
instabilities in f(R) theories (cf. [29]). The Cauchy problem in f(R) theories has also been
considered [30] where the authors concluded that the problem is well-posed in the metric
formalism. Further details as well as local and cosmological tests for f(R) theories can be
seen in [11, 12] among others.

3.1 Viability conditions of f(R) theories

Some constraints are usually imposed on the f(R) functions in order to provide consistent
theories of gravity. Three of those conditions that shall be taken into account in our study are:

1. 1 + f ′(R) > 0. This condition is imposed in order to ensure a positive effective gravita-
tional constant Geff ≡ G/ (1 + f ′(R)). It means that the main part of the contribution
to the Einstein’s equations conserves the sign [31]. This condition also guarantees the
non-tachyonic character of the standard graviton.

2. f ′′(R) ≥ 0. It ensures a stable gravitational stage. It is directly related to the presence
of a positive mass in a high curvature regime for the scalar mode associated with this
type of theories [32].

3. f(R)/R→ 0 as R→∞. This last condition ensures to get GR behavior at early times.
This way, we recover the correct predictions of GR about Big Bang nuclesynthesis and
the CMB. However, if we are only interested in analyzing models for cosmic acceleration,
this last condition is not required.

In the following discussion, the first two conditions will be assumed. The last condition
will also be discussed for completeness.

At this stage, let us remember that there also exist several constraints for the value
of |f ′(R0)| where R0 holds either for the current or past background curvature (cf. [33]).
However, these constraints must be carefully interpreted since they are obtained under several
assumptions, depend on the astrophysical curvature under consideration and in general, they
are model-dependent. A particular f(R) theory for a particular value of parameters needs a
proper analysis that is beyond the scope of this work. In any case, although these constraints
are not directly applicable in our line of study, it is interesting to keep in mind that they
may be important, and we will show for reference upper bounds from cosmological tests that
can be found in the present literature [33]. Namely,

|f ′(R0)| < 0.35 ; |f ′(R0)| < 0.07 (3.5)

according to integrated Sachs-Wolfe effect measured by CMB temperature spectrum and
correlations thereof with foreground galaxies respectively [33]. Finally, in accordance with
the authors in [34], let us stress that it is worthwhile to consider f(R) theories as effective
cosmological theories valid for an adequate range of curvatures regardless the small-scale tests
of gravity. Thus, they may provide an adequate phenomenological framework to describe new
kind of phenomena which deviate from GR behavior at large enough scales.
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4 Energy conditions in f(R) theories

In this section we are interested in analogous equations to (2.5) and (2.11) when extended
to f(R) theories. Thus, by imposing the usual energy conditions, inequalities involving
the terms Rabξ

aξb (or Rabk
akb) and f(R) extra geometrical terms will be obtained. These

inequalities will provide us an upper bound for the contribution of space-time geometry to
Raychaudhuri equation for timelike geodesics (2.1) and for null geodesics (2.2).

The usual approach in literature [21–26] consisted of defining an effective stress-energy
tensor by analogy with GR that includes the new geometrical terms in order to obtain an
expression for Rabξ

aξb. Then, generalized energy conditions on this effective tensor were im-
posed. By this procedure, a negative or zero contribution to Raychaudhuri equation from the
term Mξa = −Rabξaξb for every timelike direction ξa is obtained whenever these analogous
energy conditions hold. Nevertheless, as we have already mentioned,Mξa > 0 is satisfied for
almost all timelike directions in a RW cosmological model with the present value of the de-
celeration parameter q0 [19]. Therefore, if those extended energy conditions hold, the present
accelerated expansion of the Universe cannot be accommodated.

4.1 Inequalities derivation

Let us first take the trace of equation (3.3) that can be recast as

− 8πT = R (1− f ′(R)) + 2f(R)− 3�f ′(R) . (4.1)

Therefore, from (3.3) together with (4.1) one gets

Rab
(
1 + f ′(R)

)
− 1

2
gab
(
Rf ′(R)− f(R) + 3�f ′(R)

)
− (∇a∇b − gab�) f ′(R) = 8π

(
Tab −

1

2
Tgab

)
. (4.2)

Contracting the last equation with ξaξb, where ξa is a normalized timelike vector, ξaξa = −1,
we get

Rabξ
aξb
(
1 + f ′(R)

)
−
(
ξaξb∇a∇b −

1

2
�

)
f ′(R)

+
1

2

(
Rf ′(R)− f(R)

)
= 8π

(
Tabξ

aξb +
1

2
T

)
. (4.3)

If we consider a null vector ka instead of a timelike vector, then multiplying (4.2) by kakb

the result becomes

Rabk
akb
(
1 + f ′(R)

)
− kakb∇a∇bf ′(R) = 8πTabk

akb .

(4.4)

At this stage, let us impose the SEC and the NEC to the standard cosmological fluids in the
expressions (4.3) and (4.4) respectively. After some manipulations, they become

Rabξ
aξb ≥ 1

2(1 + f ′(R))

[
f(R)−Rf ′(R) +

(
2ξaξb∇a∇b −�

)
f ′(R)

]
(4.5)

– 8 –
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and

Rabk
akb ≥ 1

1 + f ′(R)
kakb∇a∇bf ′(R) , (4.6)

where in both expressions 1 + f ′(R) was assumed to be positive in order to guarantee Geff ≡
G/(1 + f ′(R)) > 0. Let us remind that our conclusions will be based upon this requirement.
As a result of (4.5) and (4.6), one can conclude that although the SEC (NEC) have been
assumed, in f(R) theories the sign of Rabξ

aξb (Rabk
akb) cannot be determined a priori.

Thus, if a certain model f(R) renders negative the right-hand side (r.h.s.) of (4.5) or (4.6),
some freedom remains for Rabξ

aξb or Rabk
akb to be negative which may be interpreted as a

repulsive force. Reminding now the definition (2.8), the inequalities (4.5) and (4.6) can be
cast in the following way

Mξa = −Rabξaξb ≤
−1

2(1 + f ′(R))

[
f(R)−Rf ′(R) +

(
2ξaξb∇a∇b −�

)
f ′(R)

]
, (4.7)

−Rabkakb ≤
−1

1 + f ′(R)
kakb∇a∇bf ′(R) ; (4.8)

that provide upper bounds to the contribution of space-time geometry to the Raychaudhuri
equation for timelike and null geodesics respectively.

Let us stress that in vacuum the inequalities (4.5) and (4.6) — or equivalently (4.7)
and (4.8) — get saturated since the SEC/NEC energy conditions are trivially saturated.
Consequently, if a f(R) model renders the r.h.s. of (4.7) and (4.8) positive in vacuum scenario,
then a positive contribution to the Raychaudhuri equation is automatically obtained for
timelike geodesics and null geodesics respectively.

Let us focus on a short example. The Einstein’s equations with a cosmological constant
Λ become

Rab −
1

2
Rgab + Λgab = 8πTab . (4.9)

As we have previously noted, GR with a cosmological constant is equivalent to take f(R) =
−2Λ. In this trivial case, the inequalitites (4.7) and (4.8) become

Mξa ≤ Λ , −Rabkakb ≤ 0 . (4.10)

The first inequality tells us that in the case of timelike geodesics a positive contribution to
the Raychuadhuri equation from space-time geometry Mξa > 0 is possible provided that
Λ > 0, which corresponds to the correct sign of Λ to provide cosmic acceleration.

Hence, it may be thought that a simple criterion to decide when a f(R) model is able
to render accelerated expansion of the Universe has been obtained. Nonetheless, expres-
sions (4.5) and (4.6) need to be evaluated at the solutions for (3.3) so the problem remains
cumbersome. However, such a problem is absent when space-time configurations with con-
stant scalar curvature R0 are considered.

4.2 Constant scalar curvature solutions

Space-times both in vacuum and GR cosmological scenarios when studied at late times,
with both radiation and dust being negligible with regard to a cosmological constant, are
maximally symmetric, i.e. they possess a constant Gaussian curvature K0. This implies a
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constant scalar curvature R0 = 12K0 (but the reverse is not generally true). For this reason,
it may be expected that solutions of constant scalar curvatures will be recovered at late times
by physically viable f(R) models.

Since the covariant derivatives of f ′(R) in solutions of constant scalar curvature
(R = R0) are zero, expressions (4.5) and (4.6) result respectively in

Rabξ
aξb ≥ f(R0)−R0f

′(R0)

2(1 + f ′(R0))
(4.11)

and

Rabk
akb ≥ 0 . (4.12)

A remarkable result follows from the inequality (4.12): in f(R) theories, the condition for
the null geodesic focusing theorem to hold, namely Rabk

akb ≥ 0, is satisfied in space-times of
constant scalar curvature provided that the NEC is assumed as given by (2.12). It is worth
noticing that this result does not depend upon the sign of R0 nor upon the f(R) model
under consideration. Moreover, the NEC is only assumed in the standard stress-energy
tensor for matter, not in the effective one usually defined after gathering all the new terms
of the modified Einstein equations. Since the holographic principle [35] makes use of the
null geodesic focusing theorem in order to ensure that light-sheets will eventually end, the
previous result is of extraordinary importance when studying this principle in f(R) theories.

In the rest of this investigation we shall focus on timelike geodesics. Therefore, the r.h.s.
of (4.11) must be negative in order to allow Rabξ

aξb < 0 or equivalently Mξa > 0. Thus,
Mξa be bounded from above. Hence we impose

f(R0)−R0f
′(R0)

2(1 + f ′(R0))
< 0 , (4.13)

and provided that Geff > 0, we get

f(R0)−R0f
′(R0) < 0 . (4.14)

If we now consider the equation (4.1) in vacuum (T = 0) for constant scalar curvature
solutions, the value of R0 satisfies

R0 =
−2f(R0)

1− f ′(R0)
, (4.15)

which is an algebraic equation relating R0 with the parameters of the f(R) model under
study. Although in general this equation cannot be solved analytically, there exist some
f(R) models for which a closed solution depending upon the parameters of the model can be
found. Using the equation (4.15) in (4.14) one gets

f(R0)

1− f ′(R0)
< 0 , (4.16)

that together with (4.15), implies

R0 > 0 . (4.17)
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In the pathological case 1− f ′(R) = 0, the equation (4.1) reads

f(R0) = 0 . (4.18)

then, (4.14) results in

R0 f
′(R0) > 0 , (4.19)

which is equivalent to R0 > 0 since in this case f ′(R0) = 1. Hence, a positive contribution to
the Raychaudhuri equation from the space-time geometry Mξa for every timelike direction
is obtained provided that R0 > 0. This condition will constrain the parameters of different
f(R) models as will be seen in the next section.

In fact, there exists another straightforward way of getting (4.16) as follows: the solu-
tions of (3.3) in vacuum with constant scalar curvature imply

Rab
(
1 + f ′(R0)

)
− 1

2
gab (R0 + f(R0)) = 0 (4.20)

and consequently

Rab =
1

2

R0 + f(R0)

1 + f ′(R0)
gab =

R0

4
gab , (4.21)

where (4.15) has been used in the last equality. It means that the allowed f(R) space-times
with constant scalar curvature in vacuum are Einstein spaces [20]. Thus, if a negative value of
Rabξ

aξb is required in order to haveMξa > 0 the condition R0 > 0 needs to be accomplished.
However, one must keep in mind that the inequality (4.14) is more general since it allows us
to have Mξa > 0 even for non-vacuum scenarios.

If one considers a maximally symmetric space-time, the condition (4.17) implies that in
order to guarantee a positive contribution to the Raychadhuri equation the space-time must
be de Sitter (R0 > 0). As it is widely known, a de Sitter space-time may be foliated by con-
stant curvature spacelike hypersurfaces which may be of positive, negative or zero Gaussian
curvature. Therefore, a de Sitter space-time provides us with a common language in order to
describe accelerated expanding Universe with close, open o flat spacelike hypersurfaces. The
parameters constraints for different f(R) models explored in the following guarantee that
such a space-time exists as a solution of the modified Einstein’s equations (3.3).

However, if one is interested in constant scalar curvature space-times which are not
maximally symmetric the following differential equation

ä

a
+

(
ȧ

a

)2

+
k

a2
=
R0

6
, (4.22)

where dot stands for derivatives with respect to cosmic time; needs to be solved to get a
general expression for the evolution of the scale factor of a RW metric in these space-times.
In the case of flat spacelike sections, after a change of variables this equation results in
a Riccati-type ODE that may be solved using standard methods. Hence, a constant scalar
curvature space-time may give rise to different dynamical evolution of an expanding Universe.
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5 f(R) models

Let us now study some f(R) models in vacuum to illustrate the previous results:

• Model I f(R) = α |R|β

This model encompasses a wide variety of proposals available in the literature. The
case β < 1 and in particular β = −1 was proposed in [36] as a possible mechanism to
provide cosmological acceleration, although it is currently excluded due to the Dolgov-
Kawasaki instability [28] extended in [37] for functions f(R) modifying gravity in the
infra-red limit. Extension [37] proved that for negative exponents β, models with
α < 0 are not stable. On the other hand, the β = 2 case has been proposed both as
a viable inflation candidate by Starobinsky [38] and as a dark matter model [39]. In
this last reference, the α parameter definition reads α = (6m0

2)−1 and the minimum
value allowed for m0 is computed as m0 = 2.7×10−12 GeV at 95% confidence level, i.e.
α ≤ 2.3× 1022GeV−2 [40].

Concerning other exponents, the literature is extensive [41] dealing in general with the
value of the effective mass in the scalar degree of freedom of this class of models, which
is thought to be either too small for validity of gravitational physics in the solar system,
or imaginary, leading to some of the instabilities alluded by the violation of condition
f ′′(R) ≥ 0.

For this model, the curvature scalar can be obtained from (4.15) yielding

R0 = ±
[
±1

α(β − 2)

] 1
β−1

, (5.1)

where the sign depends upon the sign of R0 because of the derivative of the absolute
value (plus signs for R0 > 0 and minus signs for R0 < 0). There is also a trivial
solution with R0 = 0 which is of no interest for our discussion. Since we are interested
in R0 > 0 we take the expression with the plus signs. In order to a positive constant
scalar curvature exist the parameters must obey

α(β − 2) > 0. (5.2)

Note that for β = 2 the only constant scalar curvature in vacuum is R0 = 0.

Regions where the conditions α(β−2) > 0 and f ′′(R0) ≥ 0 hold are plotted in figure 1.
The region where Geff = G/(1+f ′(R0)) > 0 does not hold is also represented. Since this
viability condition of f(R) has been assumed in deriving the inequality (4.16), our dis-
cussion is not valid for the values of the parameters falling in that region. Let us stress
that the conditions f ′′(R0) ≥ 0 and Geff > 0 are evaluated in the corresponding value
of the constant scalar curvature R0 which depends on the parameters. It means that
these conditions will be satisfied by the parameters that fall in the corresponding regions
in the case of constant scalar curvature solutions, not for every solution of the equa-
tion (3.3). This consideration remains valid for all the models studied in this section.

In figure 1 one can also see that for β > 0 there are regions where both requirements,
namely R0 > 0 and f ′′(R0) ≥ 0, hold. For α < 0, β must be restricted to the interval
(0, 1); on the contrary, for α > 0, it must be β > 2; in order both requirements to hold.
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Figure 1. (α, β) plane for Model I in vacuum: the pairs (α, β) lying in the blue region are those
that satisfy α(β − 2) > 0 and consequently R0 > 0. The black meshed zone fulfills f ′′(R0) ≥ 0
which is a stability condition commented in section 3. The red zone does not satisfy the condition
Geff = G/(1 + f ′(R0)) > 0 and therefore the inequality (4.16) is not valid there as commented in the
previous section. Finally, the red meshed zone does not satisfy f(R)/R→ 0 as R→∞, thus for these
parameters one cannot recover GR behavior at early times. The parameters that provide a positive
contribution from the space-time geometry, i.e. Mξa = −Rabξaξb > 0, to the Raychaudhuri equation
for congruences of timelike geodesics are those of the blue zone excluding the red zone about which
no statement can be done with our discussion. We have also added current cosmological constraints
on the value of |f ′(R0)|, the green meshed region is compatible with |f ′(R0)| < 0.35 and the region
between the dashed black lines is compatible with |f ′(R0)| < 0.07.

Finally, if one also considers the third condition of viability of section 3, the values of
the parameters are highly constrained. However, for models with α < 0 and 0 < β < 1,
it is still possible to get a constant scalar curvature solution which provides a positive
contribution to Raychaudhuri equation while the model being stable and reproducing
GR behavior at early times. Moreover, some of these region are compatible with cur-
rents cosmological constraints on the value of |f ′(R)| discussed at the end of section 3.

• Model II f(R) = Rα exp(β/R)−R

This model was discussed for α = 1 in [42] and more recently in [43]. By proceeding
as for the previous model, one gets from equation (4.15)

R0 =
β

α− 2
. (5.3)

Thus, in order to ensure a positive contribution to the Raychaudhuri equation from
the space-time geometry, i.e. Mξa = −Rabξaξb > 0 one must impose

β

α− 2
> 0 . (5.4)
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Figure 2. (α, β) plane for Model II in vacuum: for the parameters in the blue zone a positive
constant scalar curvature exists. The condition f ′′(R0) ≥ 0 is fulfilled in the meshed zone. Let us
remember that for this model the condition f ′′(R0) ≥ 0 depends on the sign of R0 and the value
of α. For simplicity, the condition f ′′(R0) ≥ 0 is plotted after assuming R0 > 0 since this is the
case in which we are interested. Moreover, for R0 > 0 the condition f ′′(R0) ≥ 0 does not depend
on the value of α. In the red region the condition Geff = G/(1 + f ′(R0)) > 0 does not hold and
consequently the inequality (4.16) does not apply there. For α = 1, represented by the dashed blue
line, the model recovers GR behavior at early times. Finally, the same upper bounds on the value of
|f ′(R0)| considered in the previous model, namely |f ′(R0)| < 0.35 and |f ′(R0)| < 0.07, are plotted.
These restrictions are satisfied between the green lines and dashed black lines respectively. Let us
recall that we have only plotted these contraints on the region where R0 > 0 for simplicity.

Note that for α = 2, the only constant scalar curvature vacuum solution is R0 = 0.
The same conditions as for the previous model are plotted in figure 2. Let us remind
that the conditions Geff > 0 and f ′′(R0) ≥ 0 are evaluated in R0 which depends on
the parameters of the model.

Let us stress that for this case the value of f ′′(R0) depends on the sign of R0. Since we
are interested in the region where R0 > 0 holds, the condition f ′′(R0) ≥ 0 is plotted
after assuming R0 > 0.

For this model, in the zone where Geff > 0 holds, all the parameters that provide
a positive scalar curvature R0 > 0 also fulfill f ′′(R0) ≥ 0. Finally, it is possible to
recover GR behavor at early times if α = 1. Hence, for this model it is also possible
to obtain a constant scalar curvature solution which provides a positive contribution
to Raychaudhuri equation while the model satisfies all the required conditions of
viablity of section 3. Furthermore, some of these regions are compatible with current
cosmological constraints on the value of |f ′(R0)|.
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Figure 3. (α, β) plane for Model III in vacuum: as for the previous figures, R0 > 0 is obtained
with parameters in the blue zone. In the meshed zone f ′′(R0) ≥ 0. Geff = G/(1 + f ′(R0)) > 0 is
not fulfilled in the red zone and thus the inequality (4.16) is not valid there. Let us remark that the
condition f ′′(R0) ≥ 0 depends on the sign of β. As we are interested in region where Geff > 0 holds,
it is plotted the region where f ′′(R0) ≥ 0 assuming β > 0. For this model, the viability condition at
early times f(R)/R → 0 as R → ∞ does not hold for any values of the parameters. For this model,
the green meshed region is compatible with the weaker upper bound on the value of |f ′(R0)|, namely
|f ′(R0)| < 0.35, but there is no region compatible with a value of |f ′(R0)| < 0.07.

• Model III f(R) = R [log(αR)]β −R

This model was also considered in [42, 43]. In this case, equation renders (4.15)

R0 =
1

α
exp(β) . (5.5)

Therefore, for this model the condition guaranteeing both R0 > 0 and a positive
contribution to Raychaudhuri equation for timelike geodesics from the space-time
geometry is α > 0.

The same conditions considered for the previous models are plotted in figure 3. For this
case, there exists also a region where both conditions R0 > 0 and f ′′(R0) ≥ 0 are satis-
fied, namely for α > 0 and β > 1/2. This model does not fulfill the condition f(R)/R→
0 as R → ∞ for any value of the parameters. However, it may be considered for late
times of cosmic evolution. Moreover, there exists a region where only one of the cosmo-
logical constraint on the value of |f ′(R0)| discussed at the end of section 3 is satisfied.

• Model IV f(R) = −γ
κ
(
R
γ

)n
1+δ

(
R
γ

)n
This model has been proposed in [44] as cosmological viable attracting much attention
in the last years. In order to illustrate our procedure, let us consider the particular
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case with n = 1

f(R) = − αR

1 + βR
, (5.6)

where a trivial redefinition of the parameters has been performed. The constant scalar
curvature of this model in vacuum becomes

R± =
α− 1

β
±
√
α(α− 1)

β
. (5.7)

It follows that only for α(α − 1) ≥ 0 constant scalar curvature solutions exist.
Therefore, imposing the constraint R± > 0 we get

α− 1

β
±
√
α(α− 1)

β
> 0 . (5.8)

Analogous plots to the previous models are shown in figure 4. For this model, two
different figures are shown since there are two possible values of R0, namely R±. For
the case R−, the regions R− > 0 and f ′′(R−) ≥ 0 do not overlap. On the other hand,
for the case R+, all the parameters pairs providing a positive constant scalar curvature
R+ > 0 also fulfill f ′′(R+) ≥ 0. Furthermore, for R+ case, the condition Geff is always
satisfied. Moreover, for the case we consider, namely (5.6), the condition f(R)/R→ 0
as R→∞ does not depend on the parameters and is always met. In the same fashion
as for the previous models, it is also plotted regions where cosmological constraints on
the value of |f ′(R0)| hold.

6 Conclusions

In this investigation we have studied the contribution of space-time geometry to the Ray-
chaudhuri equation for timelike and null geodesics. In General Relativity without a cosmo-
logical constant, once the usual energy conditions are assumed it is not possible to obtain a
positive contribution from the space-time geometry to the Raychaudhuri equation for time-
like and null geodesics. Nonetheless, a positive contribution from space-time geometry to the
Raychaudhuri equation is obtained for many timelike directions in the present Universe [19].

We have proved that in f(R) modified gravity theories although the same energy con-
ditions as in General Relativity are assumed, the fact of getting a positive contribution to
the Raychaudhuri equation from space-time is allowed.

We have derived two inequalities that bound from above this contribution for congru-
ences of both timelike and null geodesics. In order to allow a positive contribution to the
Raychaudhuri equation, these upper bounds must be positive. The limitation with the ob-
tained inequalities is that in general in order to extract some information, a metric solution
of the modified Einstein equations must be used. Nevertheless, in the cosmological relevant
case of constant scalar curvature R0 solutions, such a knowledge is not required. Under this
assumption, it was obtained that Rabk

akb ≥ 0 where ka is a null vector. This is the condition
needed for the null geodesic focusing theorem to hold. Thus, this theorem remains valid in
the context of f(R) theories for space-times with constant scalar curvature, regardless the
f(R) model considered and the matter content (provided that the Null Energy Condition is
fulfilled). This result acquires a remarkable importance when dealing with the holographic
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Figure 4. (α, β) plane for Model IV in vacuum: R+ is considered at the upper panel whereas
the lower panel considers R−. The blue zone represents the region where R+ > 0 (R− > 0). In the
meshed zone the condition f ′′(R+) ≥ 0 (f ′′(R−) ≥ 0) holds. The red zone parameters can not be
considered in our discussion since Geff = G/(1 + f ′(R+)) > 0 (Geff = G/(1 + f ′(R−)) > 0) does
not hold there. Finally, the parameters falling in the grey zone do not fulfill α(α − 1) ≥ 0 which
is a necessary condition in this model in order to provide a solution with constant scalar curvature.
Furthermore, the viability condition f(R)/R → 0 as R → ∞ is always satisfied, thus this model
recovers GR behavior at early times for every value of the parameters. As for the previous models, we
also consider current cosmological upper bounds on the value of |f ′(R0)|. The green meshed region
is compatible with |f ′(R0)| < 0.35 and the region between the dashed black line and the grey zone is
compatible with |f ′(R0)| < 0.07.

– 17 –



J
C
A
P
0
7
(
2
0
1
3
)
0
0
9

principle in the context of f(R) theories. Since if the null focusing theorem holds for this
scenario in fourth order gravity theories, the light-sheets will eventually end.

Finally, in vacuum scenarios for space-times of constant scalar curvature R0, we derived
constraints on the parameters of paradigmatic f(R) models guaranteeing a positive contri-
bution to the Raychaudhuri equation. We conclude that for the models under consideration,
there exist parameters values that allow the desired contribution while satisfying the im-
posed conditions, namely they ensure a positive effective gravitational constant, recover of
the General Relativity limit at high curvatures and guarantee the stability of the solutions.
With regard to Solar system experiments able to constrain or even discard f(R) models,
there is still a lack of a general formalism applicable to all modified gravity models [32, 45].
The study of gravitational waves [46] would also require detailed study for every model un-
der consideration beyond the scope of this investigation. Thus, for illustrative purposes we
have only considered cosmological constraints on the value of |f ′(R0)| encountered in the
literature. However, these constraints must be carefully interpreted as discussed at the end
of section 3.

For completeness, we obtain analogous conditions and arrive at the same conclusions
using the alternative formulation of f(R) theories as a Brans-Dicke model (see appendix).

In this investigation, usual energy conditions were solely imposed upon the cosmological
standard fluids whereas the extra f(R) terms were considered as geometrical terms. This
approach renders a more realistic analysis of the viability of f(R) models and has been
studied here for the first time. Furthermore, the sketched procedure developed constitutes
a straightforward and systematic approach to decide whether a particular f(R) model could
generate cosmological acceleration. For this purpose, we have paid particular attention to
constant curvature solutions. With the tools presented in this investigation, analysis can be
extended to more complicated cosmological scenarios and other alternative gravity theories
beyond the Concordance model [47].
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A Brans-Dicke field

For completeness, we judged interesting to consider the implications of the inequalities (4.7)
and (4.8) on the Brans-Dicke (BD) theories. We can define a canonical scalar field φ in terms
of the scalar curvature with the relation (cf. [32]):

f ′(R) = exp

(√
16π

3
φ

)
− 1 . (A.1)

This field φ has associated the potential

V (φ) =
Rf ′(R)− f(R)

16π (1 + f ′(R))2 , (A.2)
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where R depends on φ through equation (A.1). Therefore, constraints (4.7) and (4.8) may
be expressed in terms of this new field and its potential as

Mξa = −Rabξaξb ≤ exp

(√
16π

3
φ

)16πV (φ)−

(
2ξaξb∇a∇b −�

)
exp

(√
16π
3 φ
)

2 exp
(

2
√

16π
3 φ
)

 (A.3)

and

−Rabkakb ≤ −
kakb∇a∇b exp

(√
16π
3 φ
)

exp
(√

16π
3 φ
) . (A.4)

It is important to stress that we are interested in analyzing the behaviour of the curvature
properties associated to the original metric of the f(R) theory, dubbed as Jordan frame.
Therefore, we shall not consider the conformally modified metric that characterizes the ge-
ometry in the so called Einstein frame. The reason is that free particles follow geodesics
associated to the former metric and not the latter. Let us also recall that (A.3) and (A.4)
are valid provided the stress-energy tensor of the matter fields, i.e., excluding the BD field,
satisfies the SEC and the NEC respectively.

In order to explore further implications of these inequalities, we can assume a constant
scalar curvature space-time, as we did in the bulk of the investigation. This implies φ = φ0

constant throughout the space-time. Thus,

Rabξ
aξb ≥ −16π V (φ0) exp

(√
16π

3
φ0

)
, (A.5)

Rabk
akb ≥ 0 ; (A.6)

which are the analogous equations to (4.11) and (4.12). In particular, in Brans-Dicke formal-
ism we have recovered that the null geodesic focusing theorem holds in space-times of constant
scalar curvature and this assertion does not depend on the particular potential of the BD
field. This result has important consequences when dealing with the Holographic Principle
as we have already discussed in the bulk of the communication as well as in the conclusions.

For timelike geodesics, if we require a positive contribution to the Raychaudhuri equation
from space-time we get the following condition to be imposed on the field potential

V (φ0) > 0 , (A.7)

which is equivalent to the equation (4.14). Then, in the alternative representation of f(R)
theories as a Brans-Dicke model, a positive contribution to the Raychaudhuri equation for
timelike geodesics is allowed if the potential of the scalar field is positive and whatever the
matter content provided its stress-energy tensor satisfies the SEC.

Furthermore, in a vacuum space-time, the scalar curvature yields

R0 = 32π V (φ0) exp

(√
16π

3
φ0

)
. (A.8)

Thus, (A.7) implies R0 > 0 which coincides with the conclusion (4.17) previously obtained
for f(R) theories.
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A. de la Cruz-Dombriz and D. Sáez-Gómez, Black holes, cosmological solutions, future
singularities, and their thermodynamical properties in modified gravity theories, Entropy 14
(2012) 1717.

[12] T.P. Sotiriou, The Nearly Newtonian regime in non-linear theories of gravity, Gen. Rel. Grav.
38 (2006) 1407 [gr-qc/0507027] [INSPIRE];
S. Nojiri and S.D. Odintsov, Unified cosmic history in modified gravity: from F(R) theory to
Lorentz non-invariant models, Phys. Rept. 505 (2011) 59 [arXiv:1011.0544] [INSPIRE];
B. Jain and J. Khoury, Cosmological Tests of Gravity, Annals Phys. 325 (2010) 1479
[arXiv:1004.3294] [INSPIRE];
A. de la Cruz-Dombriz, A. Dobado and A.L. Maroto, On the evolution of density perturbations
in f(R) theories of gravity, Phys. Rev. D 77 (2008) 123515 [arXiv:0802.2999] [INSPIRE];
A. de la Cruz-Dombriz, A. Dobado and A. Maroto, Comment on “Viable singularity-free f(R)
gravity without a cosmological constant”, Phys. Rev. Lett. 103 (2009) 179001
[arXiv:0910.1441] [INSPIRE];
M. Abdelwahab, A. Abebe, A. de la Cruz Dombriz and P.K.S. Dunsby, Covariant
gauge-invariant perturbations in multifluid f(R) gravity, Class. Quant. Grav. 29 (2012) 135011
[arXiv:1110.1191];
J. Cembranos, A. de la Cruz-Dombriz and B. Montes Núñez, Gravitational collapse in f(R)
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