Publication:
Polarization changes at Lyot depolarizer output for different types of input beams

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2012-03
Authors
González de Sande, Juan Carlos
Teijeiro, Cristina
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Optical Society of America
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Lyot depolarizers are optical devices made of birefringent materials used for producing unpolarized beams from totally polarized incident light. The depolarization is produced for polychromatic input beams due to the different phase introduced by the Lyot depolarizer for each wavelength. The effect of this device on other types of incident fields is investigated. In particular two cases are analyzed: (i) monochromatic and nonuniformly polarized incident beams and (ii) incident light synthesized by superposition of two monochromatic orthogonally polarized beams with different wavelengths. In the last case, it is theoretically and experimentally shown that the Lyot depolarizer increases the degree of polarization instead of depolarizes.
Description
© 2012 Optical Society of America. One of the authors (G. P.) is grateful to the project FIS2010-17543 of the Ministerio de Ciencia e Innovación of Spain.
Keywords
Citation
1. B. Chakraborty, “Depolarizing effect of propagation of a polarized polychromatic beam through an optically active medium: a generalized study”, J. Opt. Soc. Am. A 3, 1422–1427 (1986). 2. M. Honma and T. Nose, “Liquid-crystal depolarizer consisting of randomly aligned hybrid orientation domains”, Appl. Opt. 43, 4667–4671 (2004). 3. K. Lindfors, A. Priimagi, T. Setäla, A. Schevchenko, A. T. Friberg, and M. Kaivola, “Local polarization of tightly focused unpolarized light”, Nat. Photon. 1, 228–231 (2007). 4. F. Gori, J. Tervo, and J. Turunen, “Correlation matrices of completely unpolarized beams”, Opt. Lett. 34, 1447–1449 (2009). 5. I. Vartiainen, J. Tervo, and M. Kuittinen, “Depolarization of quasi-monochromatic light by thin resonant gratings”, Opt. Lett. 34, 1648–1650 (2009). 6. C. Vena, C. Versace, G. Strangi, and R. Bartolino, “Light depolarization by non-uniform polarization distribution over a beam cross section”, J. Opt. A 11, 125704 (2009). 7. T. D. Visser, D. Kuebel, M. Lahiri, T. Shirai, and E. Wolf, “Unpolarized light beams with different coherence properties”, J. Mod. Opt. 56, 1369–1374 (2009). 8. B. Lyot, “Recherches sur la polarisation de la lumière des planètes et de quelques substances terrestres”, in Tome VIII, Facs. I of Annales de l’Observatoire de Paris (Meudon) (H. Deslandres, 1929). 9. S. Lu and A. P. Loeber, “Depolarization of white light by a birefringent crystal”, J. Opt. Soc. Am. 65, 248–251 (1975). 10. P. H. Richter, “The Lyot depolarizer in quasimonochromatic light”, J. Opt. Soc. Am. 69, 460–463 (1979). 11. A. F. Loeber, “Depolarization of white light by a birefringent crystal. II. The Lyot depolarizer”, J. Opt. Soc. Am. 72, 650-656 (1982). 12. W. K. Burns, “Degree of polarization in the Lyot depolarizer”, J. Lightwave Technol. 1, 475–479 (1983). 13. K. Mochizuki, “Degree of polarization in joined fibers: the Lyot depolarizer”, Appl. Opt. 23, 3284–3288 (1984). 14. J. Blake, B. Szafraniec, and J. Feth, “Partially polarized fiberoptic gyro”, Opt. Lett. 21, 1192–1194 (1996). 15. J. S. Wang, J. R. Costelloe, and R. H. Stolen, “Reduction of the degree of polarization of a diode laser with a fiber Lyot depolarizer”, IEEE Photon. Technol. Lett. 11, 1449–1451 (1999). 16. P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, D. F. Bliss, and D. Weyburne, “GaAs optical parametric oscillator with circularly polarized and depolarized pump”, Opt. Lett. 32, 2735–2737 (2007). 17. A. Shaham and H. S. Eisenberg, “Realizing controllable depolarization in photonic quantum-information channels”, Phys. Rev. A 83, 022303 (2011). 18. F. Gori, M. Santarsiero, R. Simon, G. Piquero, R. Borghi, and G. Guattari, “Coherent-mode decomposition of partially polarized, partially coherent sources”, J. Opt. Soc. Am. A 20, 78–84 (2003). 19. F. Gori, “Partially correlated sources with complete polarization”, Opt. Lett. 33, 2818–2820 (2008). 20. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications”, Adv. Opt. Photon. 1, 1–57 (2009). 21. R. Martínez-Herrero, P. M. Mejías, and G. Piquero, Characterization of Partially Polarized Light Fields, Springer Series in Optical Sciences (Springer, 2009), p. 147. 22. V. Ramírez-Sánchez, G. Piquero, and M. Santarsiero, “Generation and characterization of spirally polarized fields”, J. Opt. A 11, 085708 (2009). 23. V. Ramírez-Sánchez, G. Piquero, and M. Santarsiero, “Synthesis and characterization of partially coherent beams with propagation-invariant transverse polarization pattern”, Opt. Commun. 283, 4484–4489 (2010). 24. T. H. Loftus, A. M. Tomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, “Spectrally beam-combined fiber lasers for high-average-power applications”, IEEE J. Sel. Top. Quantum Electron. 13, 487–497 (2007). 25. A. Sevian, O. Andrusyak, I. Ciapurin, V. Smirnov, G. Venus, and L. Glebov, “Efficient power scaling of laser radiation by spectralbeam combining”, Opt. Lett. 33, 384–386 (2008). 26. P. M. Mejías, R. Martínez-Herrero, G. Piquero, and J. M. Movilla, “Parametric characterization of the spatial structure of nonuniformly polarized laser beams”, Prog. Quantum Electron. 26, 65–130 (2002). 27. F.Gori, M.Santarsiero, S.Vicalvi, R.Borghi, and G.Guattari, “Beam coherence polarization matrix”, Pure Appl. Opt.7, 941–951 (1998). 28. E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University, 2007). 29. M. Born and E. Wolf, Principles of Optics, 7th expanded ed. (Cambridge University, 1999). 30. F. Gori, “Polarization basis for vortex beams”, J. Opt. Soc. Am. A 18, 1612–1617 (2001). 31. Y. Gorodetski, G. Biener, A. Niv, V. Kleiner, and E. Haman, “Space-variant polarization manipulation for far field polarimetry by use of subwavelength dielectric gratings”, Opt. Lett. 30, 2245–2247 (2005).
Collections