Publication:
Anisotropic pure-phase plates for quality improvement of partially coherent, partially polarized beams

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2003-03
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Optical Society of America
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
From a theoretical point of view, the use of anisotropic pure-phase plates (APP) is considered in order to improve the quality parameter of certain partially coherent, partially polarized beams. It is shown that, to optimize the beam-quality parameter, the phases of the two Cartesian components of the field at the output of the APP plate should, be identical and should exhibit a quadratic dependence on the radial polar coordinate.
Description
© 2003 Optical Society of America. The research leading to this paper was supported by the Ministerio de Ciencia y Tecnología of Spain, project BFM2001-1356, within the framework of EUREKA project EU-2359. The authors also thank two anonymous referees for their suggestions that improved the content of this paper.
Keywords
Citation
1. S. Lavi, R. Prochaska, and E. Keren, “Generalized beam parameters and transformation law for partially coherent light”, Appl. Opt. 27, 3696–3703 (1988). 2. R. Simon, N. Mukunda, and E. C. G. Sudarshan, “Partially coherent beams and a generalized ABCD-law”, Opt. Commun. 65, 322–328 (1988). 3. M. J. Bastiaans, “Propagation laws for the second-order moments of the Wigner distribution function in first-order optical systems”, Optik (Stuttgart) 82, 173–181 (1989). 4. A. E. Siegman, “New developments in laser resonators”, in Laser Resonators, D. A. Holmes, ed., Proc. SPIE 1224, 2–14 (1990). 5. J. Serna, R. Martínez-Herrero, and P. M. Mejías, “Parametric characterization of general partially coherent beams propagating through ABCD optical systems”, J. Opt. Soc. Am. A 8, 1094–1098 (1991). 6. H. Weber, “Propagation of higher-order intensity moments in quadratic-index media”, Opt. Quantum Electron. 24, 1027–1049 (1992). 7. P. M. Mejías, H. Weber, R. Martínez-Herrero, and A. González-Ureña, eds., Proceedings of the First Workshop on Laser Beam Characterization (Sociedad Española de Óptica, Madrid, 1993). 8. H. Weber, N. Reng, J. Lüdtke, and P. M. Mejías, eds., Proceedings of the Second Workshop on Laser Beam Characterization (Festkörper-Laser-Institut, Berlin, 1994). 9. M. Morin and A. Giesen, eds., Proceedings of the Third Workshop on Laser Beam Characterization, Proc. SPIE 2870 (1996). 10. A. Giesen and M. Morin, eds., Proceedings of the Fourth International Workshop on Laser Beam and Optics Characterization (VDI-Technologiezentrum, Berlin, 1997). 11. H. Laabs and H. Weber, eds., Proceedings of the Fifth International Workshop on Laser Beam and Optics Characterization (VDI-Technologiezentrum, Erice, Italy, 2000). 12. R. Martínez-Herrero, P. M. Mejías, and G. Piquero, “Quality improvement of partially coherent symmetric-intensity beams caused by quartic phase distorsions”, Opt. Lett. 17, 1650–1651 (1992). 13. R. Martínez-Herrero and P. M. Mejías, “Quality improvement of symmetric-intensity beams propagating through pure phase plates”, Opt. Commun. 95, 18–20 (1993). 14. R. Martínez-Herrero, P. M. Mejías, and J. M. Movilla, “Spatial characterization of general partially polarized beams”, Opt. Lett. 22, 206–208 (1997). 15. J. M. Movilla, G. Piquero, R. Martínez-Herrero, and P. M. Mejías, “Parametric characterization of non-uniformly polarized beams”, Opt. Commun. 149, 230–234 (1998). 16. F. Gori, “Matrix treatment for partially polarized, partially coherent beams”, Opt. Lett. 23, 241–243 (1998).17. F. Gori, M. Santarsiero, S. Vicalvi, R. Borghi, and G. Guattari, “Beam coherence-polarization matrix”, J. Eur. Opt. Soc. A Pure Appl. Opt. 7, 941–951 (1998). 18. S. R. Seshadri, “Partially coherent Gaussian Schell-model electromagnetic beam”, J. Opt. Soc. Am. A 16, 1373–1380 (1999). 19. F. Gori, M. Santarsiero, G. Piquero, R. Borghi, A. Mondello, and R. Simon, “Partially polarized Gaussian Schell-model beams”, J. Opt. A Pure Appl. Opt. 3, 1–9 (2001). 20. Q. Lü, S. Dong, and H. Weber, “Analysis of TEM00 laser beam quality degradation caused by a birefringent Nd:YAG rod”, Opt. Quantum Electron. 27, 777–783 (1995). 21. G. Piquero, J. M. Movilla, R. Martínez-Herrero, and P. M. Mejías, “Beam quality of partially polarized beams propagating through lenslike birefringent elements”, J. Opt. Soc. Am. A 16, 2666–2668 (1999). 22. J. M. Movilla, R. Martínez-Herrero, and P. M. Mejías, “Quality improvement of partially polarized beams”, Appl. Opt. 40, 6098–6101 (2001). 23. P. M. Mejías, R. Martínez-Herrero, G. Piquero, and J. M. Movilla, “Parametric characterization of the spatial structure of non-uniformly polarized laser beams”, Prog. Quantum Electron. 26, 65–130 (2002). 24. G. Piquero, F. Gori, P. Romanini, M. Santarsiero, R. Borghi, and A. Mondello, “Synthesis of partially polarized Gaussian Schell-model sources”, Opt. Commun. 208, 9–16 (2002). 25. C. Brosseau, Fundamentals of Polarized Light (Wiley, New York, 1998). 26. D. M. Pepper, “Nonlinear optical phase conjugation”, in Laser Handbook, M. L. Stitch and M. Bass, eds. (North-Holland, Amsterdam, 1985), Vol. 4, pp. 333–485.
Collections