Publication:
QCD glueball Regge trajectory and the pomeron

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2002-11-04
Authors
Cotanch, Stephen R.
Bicudo, Pedro J.
Ribeiro, J. Emilio
Szczepaniak, Adam
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Science Bv
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Implementing many-body techniques successful in other fields, we report a glueball Regge trajectory emerging from diagonalizing a confining Coulomb gauge Hamiltonian for constituent gluons. Through a BCS vacuum ansatz and gap equation, the dressed gluons acquire a dynamic mass, of order 0.8 GeV, providing the quasiparticle degrees of freedom for a TDA glueball formulation. The TDA eigenstates for two constituent gluons have orbital, L, excitations with a characteristic energy of 0.4 GeV revealing a clear Regge trajectory. In particular, the J(PC) = 2(++) glueball coincides with the pomeron given by alpha(P)(t) = 1.08 (0.25 GeV-2)t. We also ascertain that lattice data supports our result. Finally, we conjecture on the odderon puzzle.
Description
© 2002 Elsevier Science B.V. All rights reserved. Steve Cotanch thanks Frank Close for informative comments. Pedro Bicudo acknowledges enlightening pomeron discussions with Barbara Clerbaux, Brian Cox and Mike Pichowsky. This work is supported in part by grants DOE DE-FG02 97ER41048,DE-FG02- 87ER40365 and NSF INT-9807009. Felipe J. Llanes Estrada was a SURA-JLab graduate fellowship recipient and thanks Katja Waidelich for technical help. Supercomputer time from NERSC is also acknowledged.
Unesco subjects
Keywords
Citation
[1] I. Pomeranchuk, Sov. Phys. 3 (1956) 306; L. Okun, I. Pomeranchuk, Sov. Phys. JETP 3 (1956) 307; L. Foldy, R. Peirls, Phys. Rev. 130 (1963) 1585. [2] I. Pomeranchuk, Sov. Phys. 7 (1958) 499. [3] T. Regge, Nuovo Cimento 14 (1959) 951. [4] P.D.B. Collins, An Introduction to Regge Theory and High Energy Physics, Cambridge Univ. Press, Cambridge, 1977. [5] P.V. Landshoff, J.C. Polkinghorne, Nucl. Phys. B 32 (1971) 541; A. Donnachie, P.V. Landshoff, Nucl. Phys. B 231 (1984) 189; A. Donnachie, P.V. Landshoff, Nucl. Phys. B 244 (1984) 322; A. Donnachie, P.V. Landshoff, Phys. Lett. B 185 (1987) 403; A. Donnachie, P.V. Landshoff, Phys. Lett. B 437 (1998) 408. [6] P.V. Landshoff, in: Proceedings of International Workshop on Deep Inelastic Scattering and Related Phenomena (DIS 96), DIS, 1996, p. 232. [7] M.A. Pichowsky, T.-S.H. Lee, Phys. Lett. B 379 (1996) 1; B. Clerbaux, Electroproduction Elastique de Mésons ρ à HERA, PhD Thesis, 1999. [8] C. Adolff, et al., Z. Phys. C 76 (1997) 613; A. Donnachie, P.V. Landshoff, Phys. Lett. B 437 (1998) 408; B.E. Cox, J.R. Forshaw, L. Lonnblad, hep-ph/0012310; B. Clerbaux, private communication. 54 F.J. Llanes-Estrada et al. / Nuclear Physics A 710 (2002) 45–54 [9] B.E. Cox, Nucl. Phys. (Proc. Suppl.) 79 (1999) 315. [10] E. Kuraev, L. Lipatov, V. Fadin, Sov. Phys. JETP 45 (1977) 199; Y. Balitskyand, L. Lipatov, Sov. J. Nucl. Phys. 28 (1978) 822. [11] J. Forshaw, D. Ross, Quantum Chromodynamics and the Pomeron, Cambridge Univ. Press, Cambridge, 1997. [12] A. Mueller, et al., Nucl. Phys. B 415 (1994) 373; A. Mueller, et al., Nucl. Phys. B 425 (1994) 471; N.N. Nikolaev, et al., Zeit. Phys. C 53 (1992) 331; N.N. Nikolaev, et al., Phys. Lett. B 378 (1996) 347. [13] G.F. Chew, S.C. Frautschi, Phys. Rev. Lett. 7 (1961) 394. [14] L. Kisslinger, W. Ma, Phys. Lett. B 485 (2000) 367. [15] A. Kaidalov, Y. Simonov, Phys. Lett. B 477 (2000) 163. [16] L.D. Soloviev, Theor. Math. Phys. 126 (2001) 203. [17] R.C. Brower, S.D. Mathur, C. Tan, hep-ph/0003153. [18] M.M. Brisudova, L. Burakovsky, T. Goldman, Phys. Rev. D 58 (1998) 114015. [19] S. Abatzis, et al., Phys. Lett. B 324 (1994) 509. [20] WA 102 Collaboration, D. Barberis, et al., Phys. Lett. B 474 (2000) 423; A. Kirk, Phys. Lett. B 489 (2000) 29. [21] I. Bars, A.J. Hanson, Phys. Rev. D 13 (1974) 1744; J. Johnson, C.B. Thorn, Phys. Rev. D 13 (1976) 1934. [22] F. Iachello, N.C. Mukhopadhyay, L. Zhang, Phys. Rev. D 44 (1991) 898. [23] A.P. Szczepaniak, E.S. Swanson, C.-R. Ji, S.R. Cotanch, Phys. Rev. Lett. 76 (1996) 2011. [24] F.J. Llanes-Estrada, S.R. Cotanch, Phys. Rev. Lett. 84 (2000) 1102. [25] F.J. Llanes-Estrada, S.R. Cotanch, Nucl. Phys. A 697 (2001) 303. [26] F.J. Llanes-Estrada, S.R. Cotanch, Phys. Lett. B 504 (2001) 15. [27] E. Gubankova, C.-R. Ji, S.R. Cotanch, Phys. Rev. D 62 (2000) 074001. [28] C.J. Morningstar, M. Peardon, Phys. Rev. D 60 (1999) 034509. [29] UKQCD Collaboration, G.S. Bali, et al., Phys. Lett. B 309 (1993) 378. [30] H. Chen, J. Sexton, A. Vaccarino, D. Weingarten, Nucl. Phys. B 34 (1994) 357. [31] M. Teper, hep-th/9812187. [32] WA 102 Collaboration, D. Barberis, et al., Phys. Lett. B 467 (1999) 165. [33] F.E. Close, G.A. Schuler, Phys. Lett. B 464 (1999) 279. [34] D.Q. Liu, J.M.Wu, hep-lat/0105019. [35] L. Lukaszuk, B. Nicolescu, Nuovo Cimento Lett. 8 (1973) 405. [36] J.R. Cudell, et al., Phys. Rev. D 61 (2000) 034019. [37] M. Reuter, H.G. Dosch, Phys. Lett. B 380 (1996) 177. [38] E.R. Berger, A. Donnachie, H.G. Dosch, W. Kilian, O. Nachtmann, M. Rueter, Eur. Phys. J. C 9 (1999) 491. [39] E.R. Berger, A. Donnachie, H.G. Dosch, O. Nachtmann, Eur. Phys. J. C 14 (2000) 673
Collections