Publication:
Use of biorthogonal functions for the modal decomposition of multimode beams

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2001-07-15
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Science BV
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
From a recently proposed technique, used to determine the modal weights of beams made up of incoherent superpositions of Hermite-Gaussian (PIG) modes, we derive the analytical expression of a family of functions which are biorthogonal to the squared HG functions. The knowledge of such functions enables the reconstruction of the modal content of these beams by means of the scalar-product with the intensity profile across a transverse plane.
Description
© 2001 Elsevier Science B.V. We wish to thank Franco Gori for stimulating discussions and Anthony Siegman for useful comments. G.P. thanks supports from project PB97-295, Acción Integrada Hispánico Italiana HI-1998-077, and a grant from “Ayudas Complutense Postdoctorales” program.
Keywords
Citation
[1] P.M. Mejı́as, H. Weber, R. Martı́nez-Herrero, A. González-Ureña (Eds.), Proc. Workshop on Laser Beam Characterization, SEDO, Madrid, 1993. [2] H. Weber, N. Reng, J. Lüdtke, P.M. Mejı́as (Eds.), Laser Beam Characterization, Festkörper-Laser-Institute GmbH, Berlin, 1994. [3] M. Morin, A. Giesen (Eds.), Third Internation Workshop on Laser Beam and Optics Characterization, Proc. SPIE 2870, 1996. [4] A. Giesen, M. Morin (Eds.), Proc. Fourth Internation Workshop on Laser Beam and Optics Characterization, Institut für Strahlwerkzeuge, Munich, 1997. [5] F. Gori, M. Santarsiero, G. Guattari. Coherence and space distribution of intensity J. Opt. Soc. Am. A, 10 (1993), pp. 673–679. [6] M.G. Raymer, M. Beck, D.F. McAlister. Complex wave-field reconstruction using phase-space tomography. Phys. Rev. Lett., 72 (1994), pp. 1137–1140 [7] T.E. Gureyev, A. Roberts, K.A. Nugent. Partially coherent fields, the transport-of-intensity equation, phase uniqueness. J. Opt. Soc. Am. A, 12 (1995), pp. 1942–1946. [8] R. Gase, T. Gase, K. Blüthner. Complex wave-field reconstrunction by means of the page distribution function. Opt. Lett., 21 (1996), pp. 1783–1785. [9] G. Iaconis, I.A. Walmsley. Direct measurement of the two-point field correlation function. Opt. Lett., 21 (1996), pp. 1783–1785. [10] J. Tu, S. Tamura. Analytic relation for recovering the mutual intensity by means of intensity information. J. Opt. Soc. Am. A, 15 (1998), pp. 202–206. [11] J. Turunen, E. Tervonen, A.T. Friberg. Coherence theoretic algorithm to determine the transverse-mode structure of lasers. Opt. Lett., 14 (1989), pp. 627–629. [12] E. Tervonen, J. Turunen, A.T. Friberg. Transverse laser-mode structure determination from spatial coherence measurements: experimental results. Appl. Phys., B 49 (1989), pp. 409–414. [13] A.E. Siegman, S.W. Townsend. Output beam propagation and beam quality from a multimode stable-cavity laser. IEEE J. Quant. Electron., 29 (1993), pp. 1212–1217. [14] B. Lü, B. Zhang, B. Cai, C. Yang. A simple method for estimating the number of effectively oscillating modes and weighting factors of mixed mode laser beams behaving like Gaussian Schell-model beams. Opt. Commun., 101 (1993), pp. 49–52. [15] A. Cutolo, T. Isernia, I. Izzo, R. Pierri, L. Zeni. Transverse mode analysis of a laser beam by near- and far-field intensity measurements. Appl. Opt., 34 (1995), pp. 7974–7978. [16] C. Martı́nez, F. Encinas-Sanz, J. Serna, P.M. Mejı́as, R. Martı́nez-Herrero. On the parametric characterization of the transversal spatial structure of laser pulses. Opt. Commun., 139 (1997), pp. 299–305. [17] F. Encinas-Sanz, J. Serna, C. Martı́nez, R. Martı́nez-Herrero, P.M. Mejı́as. Time-varying beam quality factor and mode evolution in TEA CO2 laser pulses. IEEE J. Quant. Electron., 34 (1998), pp. 1835–1838. [18] C. Martı́nez, J. Serna, F. Encinas-Sanz, R. Martı́nez-Herrero, P.M. Mejı́as. Time-resolved spatial structure of TEA CO2 laser pulses. Opt. Quant. Electron., 32 (2000), pp. 18–30. [19] R. Borghi, M. Santarsiero. Modal decomposition of partially coherent flat-topped beams produced by multimode lasers. Opt. Lett., 23 (1998), pp. 313–315. [20] F. Gori, M. Santarsiero, R. Borghi, G. Guattari. Intensity-based modal analysis for partially coherent beams with Hermite–Gaussian modes. Opt. Lett., 23 (1998), pp. 989–991. [21] M. Santarsiero, F. Gori, R. Borghi, G. Guattari. Evaluation of the modal structure for light beams with Hermite–Gaussian modes. Appl. Opt., 38 (1999), pp. 5272–5281. [22] R. Borghi, M. Santarsiero. Modal structure analysis for a class of axially symmetric flat-topped laser beams. IEEE J. Quant. Electron., 35 (1999), pp. 745–750. [23] A.E. Siegman, Lasers, University Science Books, Mill Valley, California, 1986. [24] X. Xue, H. Wei, A.G. Kirk. Intensity-based modal decomposition of optical beams in terms of Hermite–Gaussian functions. J. Opt. Soc. Am. A, 17 (2000), pp. 1086–1091. [25] M. Abramowitz, I. Stegun, Handbook of Mathematical Functions, Dover, New York, 1972. [26] P.M. Morse, H. Feshbach, Method of Theoretical Physics, McGraw-Hill, New York, 1953. [27] A. Kostenbauder, Y. Sun, A.E. Siegman. Eigenmode expansions using biorthogonal eigenfunctions: complex-valued Hermite gaussians. J. Opt. Soc. Am. A, 14 (1997), pp. 1780–1790. [28] I.S. Gradshtein, I.M. Ryzhik, Table of Integrals, Series and Products, Academic Press, New York, 1980. [29] L. Mandel, E. Wolf, Optical Coherence and Quantum Optics, Cambridge University Press, Cambridge, 1995. [30] F. Gori. Collett-Wolf sources and multimode laser. Opt. Commun., 34 (1980), pp. 301–305. [31] A. Starikov, E. Wolf. Coherent-mode representation of Gaussian Schell-model sources and of their radiation fields. J. Opt. Soc. Am. A, 72 (1982), pp. 923–928. [32] A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev, Integrals and Series, vol. 2, Gordon, New York, 1986. [33] F. Gori. Flattened Gaussian beams. Opt. Commun., 107 (1994), pp. 335–341.
Collections