Publication:
Shear and bulk viscosities of a photon gas at low temperature

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2013-09-12
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We explore the viscosities of a photon gas by means of the Euler-Heisenberg effective theory and quantum electrodynamics at zero electron chemical potential. We find parametric estimates that show a very large shear viscosity and an extremely small bulk viscosity (reflecting the very weak coupling simultaneously with a very approximate dilatation invariance). The system is of some interest because it exemplifies very neatly the influence of the breaking of scale invariance on the bulk viscosity.
Description
© 2013 American Physical Society. We thank useful conversations with T. Schaefer. This work was supported by Spanish Grants No. FPA2010-16963 and No. FPA2011-27853-C02-01. J.M.T.-R. is funded by Grant No. FP7 PEOPLE-2011-CIG under Contract No. PCIG09-GA-2011-291679.
Unesco subjects
22 Física
Keywords
Citation
[1] See for example P. Romatschke and U. Romatschke, Phys. Rev. Lett. 99, 172301 (2007); C. Gale, S. Jeon, and B. Schenke, Int. J. Mod. Phys. A 28, 1340011 (2013). [2] L. P. Csernai, J. I. Kapusta, and L. D. McLerran, Phys. Rev. Lett. 97, 152303 (2006). [3] A. Dobado, F. J. Llanes-Estrada, and J. M. Torres Rincon, Phys. Rev. D 79, 014002 (2009); 80, 114015 (2009). [4] F. Karsch, D. Kharzeev, and K. Tuchin, Phys. Lett. B 663, 217 (2008). [5] A. Dobado and J. M. Torres-Rincon, Phys. Rev. D 86, 074021 (2012). [6] D. Fernandez-Fraile and A. Gomez Nicola, Phys. Rev. Lett. 102, 121601 (2009). [7] D. Fernandez-Fraile, Phys. Rev. D 83, 065001 (2011). [8] P. B. Arnold, G. D. Moore, and L. G. Yaffe, J. High Energy Phys. 05 (2003) 051; P. B. Arnold, C. Dogan, and G. D. Moore, Phys. Rev. D 74, 085021 (2006). [9] E. Lu and G. D. Moore, Phys. Rev. C 83, 044901 (2011). [10] A. Dobado, F. J. Llanes-Estrada, and J. M. Torres Rincon, Phys. Lett. B 702, 43 (2011). [11] M. Mannarelli, C. Manuel, and L. Tolos, Ann. Phys. (Amsterdam) 336, 12 (2013); arXiv:1201.4006; T.Schaefer and K. Dusling, arXiv:1305.4688. [12] E. Milotti et al., Int. J. Quantum. Inform. 10, 1241002 (2012). [13] P. A. R. Ade et al. (Planck Collaboration), Astron. Astrophys. 536, A18 (2011). [14] W. Heisenberg and H. Euler, Z. Phys. 98, 714 (1936). [15] J. Halter, Phys. Lett. B 316, 155 (1993). [16] Y. Liang and A. Czarnecki, Can. J. Phys. 90, 11 (2012). [17] R. Karplus and M. Neuman, Phys. Rev. 80, 380 (1950). [18] J. M. Torres-Rincon, Ph.D. Dissertation, Universidad Complutense de Madrid (Spain), 2012, arXiv:1205.0782. [19] M. H. Thoma, Europhys. Lett. 52, 498 (2000). [20] J. O. Andersen, Phys. Rev. D 65, 025014 (2001). [21] S. Jeon and L. G. Yaffe, Phys. Rev. D 53, 5799 (1996); P. Chakraborty and J. I. Kapusta, Phys. Rev. C 83, 014906 (2011). [22] J. F. Nieves, P. B. Pal, and D. G. Unger, Phys. Rev. D 28, 908 (1983); O.K. Kalashnikov, Phys. Scr. 58, 310 (1998). [23] J. I. Kapusta and C. Gale, Finite-Temperature Field Theory (Cambridge University Press, Cambridge, England, 2006). [24] E. M. Lifschitz and L. P. Pitaevskii, Statistical Physics Part 2, Landau and Lifshitz Course of Theoretical Physics Vol. 9 (Pergamon, Oxford, 1980). [25] M. I. Gorenstein and S.-N. Yang, Phys. Rev. D 52, 5206 (1995). [26] A. S. Khvorostukhin, V. D. Toneev, and D. N. Voskresensky, Phys. Rev. C 83, 035204 (2011). [27] C. Manuel, A. Dobado, and F. J. Llanes-Estrada, J. High Energy Phys. 09 (2005) 076. [28] S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (IE-Wiley, New York, 1972).
Collections