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Abstract

A new overall parameter is defined, namely, the generalized degree of polarization, which involves the spatial
distribution of the polarization of a light beam. This parameter is introduced on the basis of a general treatment recently

w Ž . xproposed Optics Lett. 22 1997 206 to characterize partially polarized fields, which extends the Stokes-Mueller formalism
to describe the intensity moments of a quasimonochromatic beam. The main properties and the physical meaning of this
parameter with regard to the spatial inhomogeneities of the polarization state are analysed, and a general measurement
procedure is proposed. q 1998 Elsevier Science B.V.

1. Introduction

w xAs is well known 1–5 , the spatial characterization of
light beams by means of overall spatial parameters have
been defined in the scalar case. In fact, it was assumed so
far that the radiation has uniform polarization properties
over its cross-sectional area. For this kind of fields the
Stokes parameters provide a well-known tool for a system-
atic analysis of the state of polarization. In practice, how-
ever, a problem arises when radiation exhibits spatial
variations in the polarization state, for example, in birefrin-

w xgent Nd:YAG rods 6 . In such cases, the phase difference
between the orthogonal components of the electric field

Žvector has no fluctuations the field behaves as totally
. Žpolarized at each point , but its polarization state linear,

.circular or elliptical would depend on the position across
Žthe aperture we refer to this kind of fields as non-uni-

Ž . .formly totally polarized NUTP beams . A general simple
way to create NUTP beams is to combine two orthogo-
nally linearly polarized beams, which have tailored inten-

Žsity andror phase distributions see, for example, Refs.
w x.7–9 . This would generate spatial inhomogeneities in the
polarization across the beam profile. The relative impor-
tance of these inhomogeneities would be closely related to
the intensity values over the region where they appear.
Consequently, it would be interesting to describe and
characterize these features by means of some kind of

overall parameter, understood as a measure of the uniform-
ity of the polarization state of the field over those cross-
sectional regions where the beam intensity is significant.
This is the aim of this paper.

To this end, some kind of link should be established
between the spatially distributed state of polarization and

Žthe second-order intensity moments of the beam in partic-
.ular, the beam width and the far-field divergence . In this

connection, the Stokes-Mueller formalism has been quite
w xrecently extended 10 to describe the intensity moments of

partially non-uniformly polarized quasimonochromatic
beams. On the basis of this generalized formalism, we will
introduce in the next section a new overall parameter,
namely, the so-called generalized degree of polarization,
P, which characterizes the spatial distribution of the polar-
ization over the beam profile. This is of particular rele-
vance concerning the international standards that evaluate

w xthe polarization status of a general beam 11 . Its physical
meaning is illustrated by means of an example in Section
3, and a general experimental procedure that can be used
to measure P is explained in Section 4. Finally, Section 5
summarizes the main conclusions of this paper.

2. Formalism and definitions

We will consider quasimonochromatic optical fields
represented as stationary random processes, propagating as
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Ž .a beam paraxial approach along, say, the z-axis. It has
w xbeen shown 12 that, to be consistent with the Maxwell

equations, the transverse nature of the electromagnetic
field demands a nonzero transverse cross-polarization com-
ponent in addition to the longitudinal component of the
field vector along the beam axis. It was shown for Gauss-
ian beams that the longitudinal component as well as the
cross-polarization component are weaker than the principal
polarization component by 1 and 2 orders of magnitude in
Ž .y2k w , where k is the mean wavenumber and w the0 0 0 0

w xwaist size of the beam 12 . Taking this into account, we
will assume in the following that, for the beams we handle

Ž .y1in the present work, the product k w takes small0 0

enough values to ignore the effects of both kinds of
components. Note, for example, that, in the visible range,

4 y1 y2 Ž .y2k ;10 mm and w )10 mm, so that k w -0 0 0 0

10y4, and the above assumption is fulfilled.
Accordingly, from now on, we denote the associated

dimensionless field vector perpendicular to the z-axis by

E r , z ;v s E r , z ;v , E r , z ;v , 1Ž . Ž . Ž . Ž .Ž .s p

where v represents the angular frequency and s and p are
the axes of an arbitrary orthogonal coordinate system. In

Ž .Eq. 1 , E and E are the field components along theses p
Ždirections we use in this paper s and p, not x and y, to

.describe the polarization direction of the field . For conve-
Ž .nience, the spatial variables x, y sr are considered here

dimensionless variables. They are defined as the product of
k by the Cartesian coordinates of the point at which we0

are evaluating the field.
Let us first introduce the electric field cross-spectral

w xdensity matrix 13,14 , G, which, for our purposes, we
write in the form

qG r ,r , z ;v sE r , z ;v E r , z ;v , 2Ž . Ž . Ž . Ž .1 2 1 2

Žwhere the overbar symbolizes an ensemble average the
.field can, in general, be partially polarized and

E)

sqE s 3Ž .
)Ež /p

Ž Ž ..is the adjoint of the field vector E see Eq. 1 . In terms
of the matrix G, the so-called Wigner matrix, H, can be

w xdefined as follows 10,15 ,

1 s s
H r ,h , z s G rq ,ry , z exp isPh d s ,Ž . Ž .H2 ž /2 2k0

4Ž .

Ž .where hs u,Õ , with u and Õ representing angles of
Žpropagation without taking the evanescent waves into

.account . For simplicity, the dependence on v has been
Ž .omitted. To write Eq. 4 it has been implicitly considered

that the optical devices are non-dispersive systems for the
assumed beam spectral widths. If we write

R' x , y ,u ,Õ s r ,h , 5Ž . Ž . Ž .

the Stokes matrices associated to a partially polarized field
w xare defined in the form 10

tS s R R tr s H r ,h d r dh , is0,1,2,3, 6Ž . Ž .Ž .HHi i

where the superscript ‘t’ indicates the transposed matrix,
the symbol ‘tr’ denotes the trace of the matrix, and

1 0 1 0
s s , s s ,0 1ž / ž /0 1 0 y1

0 1 0 i
s s , s s . 7Ž .2 3ž / ž /1 0 yi 0

Note that s , s and s are the Pauli matrices. In1 2 3
Ž .addition, matrix S involves all measurable second-order0

intensity moments of the beam. In fact, the matrix S can0

be written as follows

W 2 c
S s , 8Ž .0 t 2ž /c F

where

w 2 x w xx xy
2W s , 9aŽ .2ž /w xxy yw x

w x w xxu xÕ
Cs , 9bŽ .ž /w x w xyu yÕ

w 2 x w xu uÕ
2F s , 9cŽ .

2ž /w x w xuÕ Õ

w xand the square brackets represent spatial averages,
namely

w x w x w xab s ab tr H d r dhs ab q ab ,Ž .ppH ss

a ,bsx , y ,u ,Õ , 10Ž .
where

w xab s ab H d r dh , i , jss, p. 11Ž .i j H i j

w 2 x w 2 xIt should be noted that the averages r and h are
related with the usual second-order intensity moments by
means of the following equations:

w 2 xr
2² :r s , 12Ž .2 24p k I0

h 2w x
2² :h s , 13Ž .24p I

² 2: Ž . ² 2: Žwhere r squared length and h dimensionless
. Ž .quantity represent the standard squared beam width and

Ž w x.divergence, respectively see, for example, Ref. 4 , and I
Žis the total power of the beam integrated throughout the

.beam profile .
Within the framework of the above formalism, let us

now introduce a new parameter, P, in terms of the traces
of the Stokes matrices

1r22 2 2tr S q tr S q tr SŽ . Ž . Ž .1 2 3
Ps . 14Ž .2tr SŽ .0
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We call P the generalized degree of polarization of the
beam because it formally resembles the well-known ex-
pression

1r22 2 2s qs qs1 2 3
Ps , 15Ž .2s0

w xwhere P is the usual degree of polarization 16 , and s ,i
is0,1,2,3, are the standard Stokes parameters. It can be

w xshown 10 that, for a general partially polarized beam, we
have

2 2 2 2tr S G tr S q tr S q tr S , 16Ž .Ž . Ž . Ž . Ž .0 1 2 3

w xwhich, in a sense, is similar to the expression 16

s2Gs2 qs2 qs2. 17Ž .0 1 2 3

Taking this into account, it follows at once that

0FPF1. 18Ž .

In addition, the case Ps1 corresponds to totally polarized
beam s whose polarization state is independent of the
transversal coordinate r. In other words, Ps1 means
uniformly totally polarized fields. On the other hand, when
the field components E and E are mutually incoherentp s
Ž .natural light Ps0. Note however, that Ps0 does not
necessarily imply completely unpolarized beams in the
usual sense, i.e., natural light: it suffices to consider, for

Ž .example, beams with random spatial but not temporal
variations in the state of polarization across their apertures.
It is also important to note that, without any prior knowl-
edge, no conclusion can be inferred from a particular value

Ž .of P /1 concerning whether the field is partially polar-
ized or exhibits a spatial dependence of the polarization

Ž .state over the beam profile NUTP beams .
In addition, it can be shown that the parameter P is

invariant under rotation of the Cartesian coordinate axes.
This result follows from a well-known theorem of matrix
algebra, namely, the invariance of the traces under rota-
tion.

To know how P propagates through optical systems it
suffices to recall the corresponding propagation laws of the

w xStokes matrices, namely 10

SX sMS M t , ns0,1,2,3, 19Ž .n n

and

3
XS s L S , n ,ms0,1,2,3, 20Ž .Ýn nm m

ms 0

where SX and SX denote the Stokes matrices at the outputn m

and input plane, respectively, M represents the 4=4
ABCD matrix of a non-polarizing first-order system, and
L are the elements of the Mueller matrix that character-nm

Žizes a polarizing optical system it is assumed that each
.L is independent of r . Accordingly, application of Eqs.nm

Ž . Ž .19 and 20 provides P at the output plane in terms of the
values of the Stokes matrices at the initial plane. In
particular, P does not change under propagation through
any 4=4 ABCD optical system in the following two cases:
Ž . Ž . Ž .i uniform totally polarized field Ps1 ; ii beams for
which S sS sS s0. Natural light belongs to this sec-1 2 3

ond type of fields.

Fig. 1. Schematic diagrams of the spatial distribution of the
polarization of a beam whose electric field amplitude is given by

Ž .Eq. 21 . In all the figures the radii of the dotted and solid-line
circles are ay1 and w , respectively. Each mark indicates the0

azimuth of the linear polarization state at each point across the
beam profile.
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3. Physical meaning of parameter P for NUTP beams

To get deeper insight into the physical meaning of
parameter P, let us now consider, for illustrative purposes,
a NUTP beam whose electrical field is represented at plane
zs0 by the following Jones vector

p 16E r sE cos exp y ar ,Ž . Ž .0 ½ 5ž 2
2

p r16sin exp y ar exp y , 21Ž . Ž .½ 5 / ž /2 w0

where E is an amplitude factor, r represents here the0

radial polar coordinate, and w and a are constants. It is0
Ž .easy to see from Eq. 21 that the global intensity of this

< < 2 < < 2beam, E q E , is purely Gaussian, and, at each points p

of its cross-section area, the field is linearly polarized
whose azimuth depends on the radial distance to the beam
centre.

Figs. 1a–1c show the spatially distributed polarization
of the beam for several values of the product aw . Inspec-0

tion of these figures reveals that inside a circle whose
radius is fay1 the beam approximately behaves as a
uniformly linearly polarized field with negligible s-compo-
nent, whereas outside such a circle, the beam remains
uniformly polarized but now with E f0.p

The abrupt transition between both regimes follows
from the super-Gaussian structure of the exponential factor
within the cosine and sine functions. Also, in Fig. 1a
Ž .aw <1 the field behaves as p-polarized over that0

cross-sectional area over which the beam intensity takes
appreciable values. In fact the beam intensity outside the

Ž .dotted circle is negligible. In Fig. 1b aw 41 , the beam0

behaves as s-polarized over the entire beam profile except
over a small area around its centre. Finally, in Fig. 1c
Ž .aw f1 the global beam intensities associated to the s-0

and p-polarized regions are balanced.
Let us now plot the value of P in terms of the product
Ž .aw see Fig. 2 . We get Pf1 for the cases sketched in0

Fig. 2. Generalized degree of polarization P versus the product
Ž .aw for the example represented by Eq. 21 .0

Ž .Figs. 1a and 1c, but P drastically reduces PF0.3 when
aw approaches 1. Taking this into account, it can be said0

that, for NUTP beams, the parameter P is a measure of
the uniformity of the polarization state of the beam oÕer
those cross-sectional regions where the beam intensity is
important. In other words, values of P close to 1 means
that the beam has uniform polarization at least oÕer the
beam profile region where the intensity takes the most
significant Õalues and the value Pf0 means that no
oÕerall definite state of polarization can be assigned oÕer
such peak intensity region.

4. Measurement of P

Parameter P can be measured in different ways. We
will next propose a simple experimental procedure that
resembles the well-known method applied to determine the
standard Stokes parameters. By using a polarizer and a
quarter-wave plate, one only needs to measure the global

Žintensity and the second-order beam moments beam width
.and divergence for several orientations of the transmission

axis of the polarizer, and solve the corresponding relations
Ž .obtained from the propagation law 20 . The method fol-

lows four steps:
Ž .1. We measure the total power I, the squared beam

Ž .width and the squared divergence of the beam at the
observation plane in the free propagation case.

2. We measure the same parameters as before but now
the beam travels through a polarizer which accepts linear
polarization in the azimuth as08, where shows a the
orientation of the transmission axis of the polarizer with
respect to the s-axis.

3. The same measurements as in step 2 but now with
as458.

4. We again measure the same parameters as above but
now the beam propagates successively through the

Žquarter-wave plate whose fast axis makes an angle 08 with
.the s-axis and the polarizer oriented so as to transmit the

component in the azimuth as458.
Of course, the observation plane remains unchanged

Ž .during the procedure. After application of Eq. 20 the
Žresulting equations for the traces of the matrices S ini

Ž ..terms of the averages defined in Eq. 10 are

w 2 x 2tr S s r q h , 22aw x Ž .FP0 FP

1
2 2w xtr S s 2 r q hw x� Ž .as081 as08T yT1 2

y T qT tr S , 22bŽ .Ž . 41 2 0

1
2 2w xtr S s 2 r q hw x� Ž .as4582 as458T yT1 2

y T qT tr S , 22cŽ .Ž . 41 2 0
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1
2 2w xtr S s 2 r q hw x� Ž .lr4,as458 Ž .lr4,as4583 T yT1 2

y T qT tr S , 22dw x Ž .Ž . 41 2 0

where the subscript ‘FP’ denotes free propagation to the
observation plane and the subscript ‘lr4, us458’ refers

w 2 x w 2 xto step 4 of our procedure. Remember that r and h

are connected with the respective standard measurable
Ž .second-order intensity moments through Eqs. 12 and

Ž . Ž .13 . We have also included in Eqs. 22 the coefficients
T and T that characterize the major and minor principal1 2

Žtransmittances of any imperfect polarizer see, for exam-
w x w x.ple, Refs. 17 and 18 . From the above expressions, the

value of P can be inferred at once.

5. Conclusions

On the basis of the Stokes-Mueller formalism, the
distributed state of polarization of a non-uniformly totally
polarized quasimonochromatic light beam has been charac-
terized by means of a new overall parameter, namely, the
so-called generalized degree of polarization, P. The limit
values of P have been given, along with some invariance
properties. Moreover, P is shown to be closely related with
the well-known second-order intensity moments, such as
the beam width and the far-field divergence. This enables
us to measure P by means of a simple experimental
procedure that resembles the method used to determine the
standard Stokes parameters.
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