Publication:
Thermal growth and luminescence of wurtzite ZnS nanowires and nanoribbons

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2012-06-01
Authors
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Science B.V.
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
ZnS nanowires and nanoribbons have been obtained by the vapor–solid (VS) method. The morphology depends mainly on the deposition temperature; nanowires are grown at temperatures between 300 °C and 650 °C while the growth of nanoribbons takes place at deposition temperatures in the range 650 °C–900 °C. X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies show that from cubic ZnS precursor hexagonal-phase nanostructures are obtained. Cathodoluminescence (CL) and photoluminescence (PL) measurements show a dominance of the native defects related emission compared to the near band edge emission, with marked differences between nanowires and nanoribbons.
Description
©2012 Elsevier B.V. This work was supported by MICINN (Projects MAT2009-07882 and CSD2009-0013). B. Sotillo acknowledges Ministerio de Educación (Subprograma FPU) of Spain for financial support.
Unesco subjects
Keywords
Citation
[1] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan. Advanced Materials, 15 (2003), pp. 353–389. [2] E. Comini, C. Baratto, G. Faglia, M. Ferroni, A. Vomiero, G. Sberglieri. Progress in Materials Science, 54 (2009), pp. 1–67. [3] T. Zhai, X. Fang, M. Liao, X. Xu, H. Zeng, B. Yoshio, D. Golberg. Sensors, 9 (2009), pp. 6504–6529. [4] X. Fang, Y. Bando, M. Liao, U.K. Gautam, C. Zhi, B. Dierre, B. Liu, T. Zhai, T. Sekiguchi, Y. Koide, D. Golberg. Advanced Materials, 21 (2009), pp. 2034–2039. [5] Z.G. Chen, J. Zou, G. Liu, H.F. Lu, F. Li, G.Q. Lu, H.M. Cheng. Nanotechnology, 19 (2008), p. 055710. [6] M.Y. Yu, J.H. Song, M.P. Lu, C.Y. Lee, L.J. Chen, Z.L. Wang. ACS Nano, 3 (2009), pp. 357–362. [7] Z.-G. Chen, L. Cheng, J. Zou, X. Yao, G.Q. Lu, H.-M. Cheng. Nanotechnology, 21 (2010), p. 065701. [8] Y. Wang, L. Zhang, C. Liang, G. Wang, X. Peng. Chemical Physics Letters, 357 (2002), pp. 314–318. [9] X. Fang, Y. Bando, C. Ye, G. Shen, D. Golberg. Journal of Physical Chemistry C, 111 (2007), pp. 8469–8474. [10] X.J. Xu, G.-T. Fei, W.-H. Yu, X.W. Wang, L. Chen, L.-D. Zhang. Nanotechnology, 17 (2006), pp. 426–429. [11] D. Moore, Z.L. Wang. Journal of Materials Chemistry, 16 (2006), pp. 3898–3905. [12] J. Hu, G. Wang, C. Guo, D. Li, L. Zhang, J. Zhao. Journal of Luminescence, 122-123 (2007), pp. 172–175. [13] T. Zhai, Z. Gu, Y. Ma, W. Yang, L. Zhao, J. Yao. Materials Chemistry and Physics, 100 (2006), pp. 281–284. [14] M.V. Limaye, S. Gokhale, S.A. Acharya, S.K. Kulkarni. Nanotechnology, 19 (2008), p. 415602. [15] C.-Y. Yeh, Z.W. Lu, S. Froyen, A. Zunger. Physical Review B, 46 (1992), pp. 10086–10097. [16] D. Moore, J.R. Morber, R.L. Snyder, Z.L. Wang. Journal of Physical Chemistry C, 112 (2008), pp. 2895–2903. [17] A. Urbieta, P. Fernández, J. Piqueras. Journal of Nano Research, 4 (2008), pp. 27–32. [18] Y. Ortega, P. Fernández, J. Piqueras. Journal of Applied Physics, 105 (2009), p. 054315. [19] Y. Ortega, P. Fernández, J. Piqueras. Journal of Crystal Growth, 311 (2009), pp. 3231–3234. [20] B. Alemán, P. Hidalgo, P. Fernández, J. Piqueras. Journal of Physics D: Applied Physics, 42 (2009), p. 225101. [21] Y. Ortega, P. Fernández, J. Piqueras. Journal of Nanoscience and Nanotechnology, 10 (2010), pp. 502–507. [22] S.B. Qadri, E.F. Skelton, D. Hsu, A.D. Dinsmore, J. Yang, H.F. Gray, B.R. Ratna. Physical Review B, 60 (1999), pp. 9191–9193. [23] C. Boudias, D. Monceau, CaRIne Crystallography 3.1, DIVERGENT S.A., Centre de Transfert, 60200 Compiègne, France, 1989–1998. [24] S. Kar, S. Chaudhuri. Chemical Physics Letters, 414 (2005), pp. 40–46. [25] C. Ma, D. Moore, Y. Ding, J. Li, Z.L. Wang. Advanced Materials, 15 (2003), pp. 228–231. [26] D. Moore, C. Ronning, C. Ma, Z.L. Wang. Chemical Physics Letters, 385 (2004), pp. 8–11. [27] A. Urbieta, P. Fernández, J. Piqueras, Ch Hardalov, T. Sekiguchi. Journal of Physics D: Applied Physics, 34 (2001), pp. 2945–2949. [28] X. Fang, T. Zhai, U.K. Gautam, L. Li, L. Wu, Y. Bando, D. Golberg. Progress in Materials Science, 56 (2011), pp. 175–287. [29] J. Cao, J. Yang, Y. Zhang, L. Yang, D. Wang, M. Wei, Y. Wang, Y. Liu, M. Gao, X. Liu. Journal of Physics D: Applied Physics, 43 (2010), p. 075403. [30] D. Yuanyuan, J. Wanqi, L. Huanyong. Journal of Semiconductors, 30 (2009), p. 083005. [31] J.W. Allen. Semiconductor Science and Technology, 10 (1995), pp. 1049–1064. [32] Q. Li, C. Wang. Applied Physics Letters, 83 (2003), pp. 359–361. [33] S. Lee, D. Song, D. Kim., J. Lee, S. Kim, I.Y. Park, Y.D. Choi. Materials Letters, 58 (2004), pp. 342–346. [34] T. Mitsui, N. Yamamoto, T. Tadokoro, S. Ohta. Journal of Applied Physics, 80 (1996), pp. 6972–6979. [35] H. Chen. Journal of Materials Science, 46 (2011), pp. 2715–2719. [36] Y. Changhui, X. Fang, L. Guanghai, L. Zhang. Applied Physics Letters, 85 (2004), pp. 3035–3037. [37] J. Zheng, J.W. Allen. Semiconductor Science and Technology, 5 (1990), pp. 1013–1017. [38] A. Urbieta, P. Fernández, J. Piqueras, T. Sekiguchi. Semiconductor Science and Technology, 16 (2001), pp. 589–593. [39] J.F. Scott, T.C. Damen, W.T. Silfvast, R.C.C. Leite, L.E. Cheesman. Optics Communications, 1 (1970), pp. 397–399.
Collections