Publication:
Fe solubility, growth mechanism, and luminescence of Fe doped ZnO nanowires and nanorods grown by evaporation-deposition

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2011-07-01
Authors
Piqueras de Noriega, Javier
Alemán Llorente, Belén
García Martínez, José Ángel
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Institute of Physics
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Fe dopedZnO nanowires,nanorods, and urchin-like nanostructures have been grown using an evaporation-deposition method with compacted mixtures of ZnS and Fe_2O_3 powders, with different Fe contents as precursors. Treatments at 950 °C under argon flow lead to the growth of irondopednanowires,nanorods, and other nanostructures on the surface of the compacted sample. The incorporation of iron into the nanostructures has been investigated via energy dispersive spectroscopy as well as by cathodoluminescence in a scanning electron microscope and photoluminescence in an optical microscope. The iron content in the structures is limited to the range of 0.5–0.7 at.% and does not depend on the content in the precursor. Bright and dark field imaging and twist contour analysis via transmission electron microscopy support the possibility of a dislocation driven growth of the nanowires.
Description
© 2011 American Institute of Physics. This work was supported by MCINN (MAT2009-07882, CSD2009-00013) and UCM-BSCH (Group 910146).
Unesco subjects
Keywords
Citation
1. C. X. Xu, X. W. Sun, Z. L. Dong, M. B. Yu, Y. Z. Xiong, and J. S. Chen, Appl. Phys. Lett. 86, 173110 (2005). 2. S. Baek, J. Song, and S. Lim, Physica B 399, 101 (2007). 3. E. Oh, S. H. Jung, S. H. Jeong, S. Yu, and S. J. Rhee, Mater. Lett. 62, 3456 (2008). 4. B. Zhang, S. Zhou, H. Wang, and Z. Du, Chin. Sci. Bull. 53, 1639 (2008). 5. S. Mü ller, M. Zhou, Q. Li, and C. Ronning, Nanotechnology 20, 135704 (2009). 6. L. Khomenkova, P. Fernández, and J. Piqueras, Cryst. Growth Des. 7, 836 (2007). 7. O. Ko¨ster-Scherger, H. Schmid, N. Vanderschaeghe, F. Wolf, and W. Mader, J. Am. Ceram. Soc. 90, 3984 (2007). 8. J. Chen, J. Liu, A. West, Y. Yan, M. Yu, and W. Zhou, IEEE Trans. Magn. 44, 2681 (2008). 9. Z. Jin, T. Fukumura, M. Kawasaki, K. Ando, H. Saito, T. Sekiguchi, Y. Z. Yoo, M. Murakami, Y. Matsumoto, T. Hasegawa, and H. Koinuma, Appl. Phys. Lett. 78, 3824 (2001). 10. M. J. Bierman, Y. K. A. Lau, A. V. Kvit, A. L. Schmitt, and S. Jin, Science 320, 1060 (2008). 11. S. A. Morin, M. J. Bierman, J. Tong, and S. Jin, Science 328, 476 (2010). 12. S. Jin, M. J. Bierman, and S. A. Morin, J. Phys. Chem. Lett. 1, 1472 (2010). 13. S. A. Morin and S. Jin, Nano Lett. 10, 3459 (2010). 14. G. W. Sears, Acta Metall. 3, 367 (1955). 15. F. C. Frank, Acta Crystallogr. 4, 497 (1951). 16. D. Maestre, D. Häussler, A. Cremades, W. Jäger, and J. Piqueras, Cryst. Growth Des. 11, 1117 (2011). 17. C. M. Drum, J. Appl. Phys. 36, 824 (1965). 18. J. D. Eshelby, J. Appl. Phys. 24, 176 (1953). 19. J. D. Eshelby, Philos. Mag. 3, 440 (1958). 20. B. Sieber, A. Addad, S. Szuneris, and R. Boukherroub, J. Phys. Chem. Lett. 1, 3033 (2010). 21. A. Urbieta, P. Fernández, and J. Piqueras, Appl. Phys. Lett. 85, 5968 (2004).
Collections