Publication:
Effects of transition metal doping on the growth and properties of Rutile TiO_2 nanoparticles

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2013-01-31
Authors
Cristian Vasquez, G.
Andrea Peche-Herrero, M.
Ramirez-Castellanos, Julio
María Gonzalez-Calbe, José
Piqueras de Noriega, Javier
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Amer Chemical Soc
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Rutile TiO_2 nanoparticles doped with V, Cr, or Mn ions have been synthesized via a modified Pechini method using polymeric precursors. The final particle sizes range between 20 and 500 nm depending on the selected dopant. The TiO_2 rutile phase has been stabilized in the doped nanoparticles at 650 degrees C. Microstructural analysis shows a good crystallinity and cationic homogeneity of the doped nanoparticles. The cathodoluminescence study of the doped and undoped nanoparticles shows a luminescence signal related to the structural defects of the samples and the presence of dopants. In particular, an intense 1.52 eV emission associated with Ti^3+ interstitials dominates the luminescence of undoped nanoparticles, which also exhibit less intense emissions extending from 2 to 3.4 eV. The presence of V, Cr, or Mn in the rutile TiO_2 nanoparticles induces variations in the associated cathodoluminescence signal which would be useful in order to achieve a deeper understanding of the doping process and spread future optical applications. X-ray photoelectron spectroscopy (XPS) confirmed the presence of Ti^3+ in the near-surface region of the nanoparticles, the concentration of which decreases when doping. The presence of Ti^3+ interstitials related states in the band gap is discussed.
Description
© 2013 American Chemical Society. This work was supported by MICINN (MAT-2009-07882, CSD 2009-00013, MAT2011-23068). The authors are grateful to National Center for Electron Microscopy (CNME) at Universidad Complutense de Madrid. The authors are grateful to the ESCA microscopy beamline staff for useful advice on XPS measurements at the Elettra Sincrotron in Trieste.
Unesco subjects
Keywords
Citation
(1) Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Chem. Rev. 1995, 95, 69−69. (2) Gratzel, M. Photoelectrochemical Cells. ̈ Nature 2001, 414, 338−344. (3) Linsebigler, A. L.; Lu, G.; Yates, J. T. Chem. Rev. 1995, 95, 735−758. (4) Millis, A.; Le Hunte, S. J. Photochem. Photobiol. A 1997, 108, 1−35. (5) Kronawitter, C. X.; Bakke, J. R.; Wheeler, D. A.; Wang, W. C.; Chang, C.; Antoun, B. R.; Zhang, J. Z.; Guo, J.; Bent, S. F.; Mao, S. S.; Vayssieres, L. Nano Lett. 2011, 11, 3855−3861. (6) Zhu, Y.; Zhang, L.; Yao, W.; Cao, L. Appl. Surf. Sci. 2000, 158, 32−37. (7) Reidy, D. J.; Holmes, J. D.; Morris, M. A. J. Eur. Ceram. Soc. 2006, 26, 1527−1534. (8) Trentler, T. J.; Denler, T. E.; Bertone, J. F.; Agrawal, A.; Colvin, V. L. J. Am. Chem. Soc. 1999, 121, 1613−1614. (9) Maestre, D.; Cremades, A.; Piqueras, J. Nanotechnology 2006, 17, 1584−1588. (10) Wu, J. J.; Yu, C. C. J. Phys. Chem. B 2004, 108, 3377−3379. (11) Lei, Y.; Zhang, L. D.; Fan, J. C. Chem. Phys. Lett. 2001, 338, 231−236. (12) Pechini, M. P. US Patent No. 3330697, 1967. (13) Fernandez, I.; Cremades, A.; Piqueras, J. ́ Semicond. Sci. Technol. 2005, 20, 239−243. (14) Sanjines, R.; Tang, H.; Berger, H.; Gozzo, F.; Margaritondo, G.; ́ Levy, F. J. Appl. Phys. 1994, 75, 2945−1−2945−7. (15) Kumar, P. M.; Badrinarayanan, S.; Sastry, M. Thin Solid Films 2000, 358 122.130. (16) Colombo, D. P.; Roussel, K. A.; Saeh, J.; Skinner, D. E.; Cavaleri, J. J.; Bowman, R. M. Chem. Phys. Lett. 1995, 232, 207−214. (17) Lei, Y.; Zhang, D.; Meng, G. W.; Li, G. H.; Zhang, X. Y.; Liang, C. H.; Chen, W.; Wang, S. X. Appl. Phys. Lett. 2001, 78, 1125−1127. (18) Wu, J. M.; Shih, H. C.; Wu, W. T.; Tseng, Y. K.; Chen, I. C. J. Cryst. Growth 2005, 281, 384−390. (19) Suisalu, A.; Aarik, J.; Mandar, H.; Sildos, I. ̈ Thin Solid Films 1998, 336, 295−298. (20) Liu, S. W.; Song, C. F.; Lü, M. K.; Gu, F.; Wang, S. F.; Xu, D.; Yuan, D. R.; Wang, C. Mater. Sci. Eng., B 2003, 104, 49−53. (21) Satoh, N.; Nakashima, T.; Kamikura, K.; Yamamoto, K. Nat. Nanotechnol. 2008, 3, 106−111. (22) Peng, H.; Li, J.; Li, S. S.; Xia, J. B. J. Phys. Chem. C 2008, 112, 13964−13969. (23) Enright, B.; Fitzmaurice, D. J. Phys. Chem. 1996, 100, 1027−1035. (24) Monticone, S.; Tufeu, R.; Kanaev, A. V.; Scolan, E.; Sanchez, C. ́ Appl. Surf. Sci. 2000, 162−163, 565−570. (25) Osorio-Guillen, J.; Lany, S.; Zunger, A. ́ Phys. Rev. Lett. 2008, 100, 036601−1−036601−4. (26) Klosek, S.; Raftery, D. J. Phys. Chem. B 2001, 105, 2815−2819. (27) Nogales, E.; García, J. A.; Mendez, B.; Piqueras, J. ́ J. Appl. Phys. 2007, 101, 033517−1−033517−4. (28) Song, C. F.; Lü, M. K.; Yang, P.; Gu, F.; Xu, D.; Yuan, D. R. J. Sol-Gel Sci. Technol. 2003, 28, 196−197. (29) Diebold, U. Surf. Sci. Rep. 2003, 48, 53−229. (30) Luciu, I.; Bartali, R.; Laidani, N. J. Phys. D: Appl. Phys. 2012, 45, 345302−1−345302−9. (31) Thomas, A. G.; Flavell, W. R.; Mallick, A. K.; Kumarasinghe, A. R.; Tsoutsou, D.; Khan, N.; Chatwin, C.; Rayner, S.; Smith, G. C.; Stockbauer, R. L.; Warren, S.; Johal, T. K.; Patel, S.; Holland, D.; Taleb, A.; Wiame, F. Phys. Rev. B 2007, 75, 035105−1−035105−12. (32) Wendt, S.; Sprunger, P. T.; Lira, E.; Madsen, G. K. H.; Li, Z.; Hansen, J. O.; Matthiesen, J.; Blekige-Rasmussen, A.; Laegsgaard, E.; Hammer, B.; Besenbacher, F. Science 2008, 320, 1755−1759. (33) Maestre, D.; Martinez de Velasco, I.; Cremades, A.; Amati, M.; Piqueras, J. J. Phys. Chem. C 2010, 114, 11748−11752.
Collections