Publication:
Electric field distribution and energy absorption in anisotropic and dispersive red blood cells

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2007-12-07
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
IOP Publishing Ltd
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We have studied the influence of the anisotropic and dispersive nature of the red blood cell structure on the energy absorption and electric field distribution within the cell exposed to electromagnetic fields of frequencies in the range from 50 kHz to 10 GHz. For this purpose we have generated a realistic model of a multilayered erythrocyte cell from a set of parametric equations in terms of Jacobi elliptic functions. The effect of dipole relaxations and anisotropic conductivities is taken into account in the dispersion equations for the conductivity and permittivity of each layer (cytoplasmic and extra-cellular bound waters, membrane, cytoplasm and external medium). Using a finite element numerical technique, we have found that the electric field distribution and the energy absorbed in the membrane show well-defined maxima for both normal and parallel orientations of the external field with respect to the symmetry axis of the cell. The normal and tangential conductivities and permittivities of the membrane are shown to be responsible for the different peak amplitudes and frequency shifts of the maxima. A previously unnoticed effect is that the cell shape combined with the dispersion of the membrane permittivity and the influence of bound water layers leads to a very high amplification factor (greater than 300) of the electric field in the membrane at frequencies in the megahertz range.
Description
© IOP Publishing Ltd. We acknowledge the financial support of the Spanish Ministerio de Educación y Ciencia under grant FIS2005-00752.
Unesco subjects
Keywords
Citation
1) Abramowitz, M. and Stegun, I. A. (ed), 1965, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (New York: Dover) 2) ANSOFT 2002 HFSS 8.25 User’s Manual 3) Asami, K., 2006, Dielectric dispersion in biological cells of complex geometry simulated by three-dimensional finite difference method, J. Phys. D: Appl. Phys. 39, 492–9. 4) Asami, K., Hanai, T. and Koizumi, N., 1980, Dielectric approach to suspensions of ellipsoidal particles covered with a shell in particular reference to biological cells, Japan. J. Appl. Phys. 19, 359–65. 5) Ballario, C., Bonincontro, A., Cametti, C., Rosi, A. and Sportelli, L., 1984, Conductivity of normal and pathological human erythrocytes at radiowave frequencies, Z. Naturforsch. 39C, 160–6. 6) Baumann, M., 2001, Early stage shape change of human erythrocytes after application of electric field pulses, Mol. Membr. Biol. 18, 153–60. 7) Beving, H., Eriksson, L.E.G., Davey, C.L. and Kell, D.B., 1994, Dielectric properties of human blood and erythrocytes at radio frequencies (0.2–10 MHz): dependence on cell volume fraction and medium composition, Eur. Biophys. J. 23, 207–15. 8) Bloor, M.I.G. and Wilson, M.J., 2000, Method for efficient shape parametrization of fluid membranes and vesicles, Phys. Rev. E 61, 4218–29. 9) Bordi, F., Cametti, C. and Di Biasio,A., 1990, Determination of cell membrane passive electrical properties using frequency domain dielectric spectroscopy technique. A new approach, Biochim. Biophys. Acta, 1028, 201–4. 10) Brecht, M., Klösgen, B., Reichle, C. and Kramer, D., 1999, Distribution function in the description of relaxation phenomena, Mol. Phys. 96, 149–60. 11) Cherepanov, D.A., Feniouk, B.A., Junge, W. and Mulkidjanian, A.Y., 2003, Low dielectric permittivity of water at the membrane interface: effect on the energy coupling mechanism in biological membranes, Biophys. J. 85, 1307–16. 12) Deuling, H.J. and Helfrich, W., 1976, Red blood cell shapes as explained on the basis of curvature elasticity, Biophys. J. 16, 861–8. 13) Di Biasio, A. and Cametti, C., 2005, Effect of the shape of human erythrocytes on the evaluation of the passive electrical properties of the cell membrane, Bioelectrochemistry 65, 163–9. 14) Ding, E.J. and Aidun, C.K., 2006, Cluster size distribution and scaling for spherical particles and red blood cells in pressure-driven flows at small Reynolds number, Phys. Rev. Lett. 96, 204502(4). 15) Dumez, H., Reinhart, W., Guetens, G. and Bruijn, E., 2004, Human red blood cells: rheological aspects, uptake, and release of cytotoxic drugs, Crit. Rev. Clin. Lab. Sci. 41, 159–88. 16) Esch, M., Sukhorukov, V.L., Kurschner, M. and Zimmermann, U., 1999, Dielectric properties of alginate beads and bound water relaxation studied by electrorotation, Biopolymers 50, 227–37. 17) Foster, K.R. and Schwan, H.P., 1989, Dielectric properties of tissues and biological materials: a critical review. Handbook of Biological Effects of Electromagnetic Fields, Crit. Rev. Biomed. Eng. 17, 1, 25–104. 18) Fricke, H., 1925, The electric capacity of suspensions with special reference to blood ,J. Gen. Physiol. 9, 137–52. 20) Gabriel, C., Gabriel, S., Grant, E.H., Halstead, B.S.J. and Mingos, M.P., 1998, Dielectric parameters relevant to microwave dielectric heating, Chem. Soc. Rev. 27, 213–23. 21) García, A., Grosse, C. and Brito, P., 1985, On the effect of volume charge distribution on the Maxwell–Wagner relaxation, J. Phys. D: Appl. Phys. 18, 739–45. 22) Gimsa, J., Müller, T., Schnelle, T. and Fuhr, G., 1996, Dielectric spectroscopy of single human erythrocytes at physiological ionic strength: dispersion of the cytoplasm, Biophys. J. 71, 495–506. 23) Gimsa, J. and Wachner, D., 2001, Analytical description of the transmembrane voltage induced on arbitrarily oriented ellipsoidal and cylindrical cells, Biophys. J. 81, 1888–96. 24) Gougerot, L. and Foucher, M., 1972, La membrane de l’hematie est-elle un die1ectrique parfait?, Ann. Phys. Biol. Med. 6, 17–42. 25) Green, N.G. and Morgan, H., 1997, Dielectrophoretic separation of nano-particles, J. Phys. D: Appl. Phys. 30, 11, L41–4. 26) Hanai, T., Haydon, D.A. and Taylor, J., 1965, Some further experiments on bimolecular lipid membranes, J. Gen. Physiol. 48, 59–63. 27) Jay, A.W.L., 1975, Geometry of the human erythrocyte: I. Effect of albumin on cell geometry, Biophys. J. 15, 205–22. 28) Jenin, P.C. and Schwan, H.P., 1980, Some observations on the dielectric properties of hemoglobin’s suspending medium inside human erythrocytes, Biophys. J. 30, 285–94. 29) Kaatze, U., 1990, On the existence of bound water in biological systems as probed by dielectric spectroscopy?, Phys. Med. Biol. 35, 1663–81. 30) Klösgen, B., Reichle, C., Kohlsmann, S. and Kramer, K., 1996, Dielectric spectroscopy as a sensor of membrane headgroup mobility and hydration, Biophys. J. 71, 3251–60. 31) Kotnik, T. and Miklavcic, D., 2000, Analytical description of transmembrane voltage induced by electric fields on spheroidal cells, Biophys. J. 79, 670–9. 32) Kuchel, P. and Fackerell, E., 1999, Parametric equation representative of biconcave erythrocytes, Bull. Math. Biol. 61, 209–20. 33) Kúrschner, M., Nielsen, K., Andersen, C., Sukhorukov, V.L., Schenk,W.A., Benz, R. and Zimmermann, U., 1998, Interaction of lipophilic ions with the plasma membrane of mammalian cells studied by electrorotation, Biophys. J. 74, 3031–43. 34) Läuger, P., Benz, R., Stark, G., Bamberg, E., Jordan, P.C., Fahr, A. and Brock, W., 1981, Relaxation studies of ion transport systems in lipid bilayer membranes, Q. Rev. Biophys. 14, 513–98. 35) Liu, L.M. and Cleary, S.F., 1995. Absorbed energy distribution from radiofrequency electromagnetic radiation in a mammalian cell model: effect of membrane-bound water, Bioelectromagnetics 16, 160–71. 36) Miller, C.E. and Henriquez, C.S., 1988, Three-dimensional finite element solution for biopotentials: erythrocyte in an applied field, IEEE Trans. Biomed. Eng. 35, 712–7. 37) Moon, P. and Spencer, D.E., 1998, Field Theory Handbook: Including Coordinate Systems, Differential Equations and Their Solutions (Berlin: Springer), 38) Muñoz, S.M., Sebastián, J.L., Sancho, M. and Álvarez, G., 2006, Modelling normal and altered human erythrocyte shapes by a new parametric equation: application to the calculation of induced transmembrane potentials, Bioelectromagnetics 27, 521–7. 39) Muñoz, S.M., Sebastián, J.L., Sancho, M. and Miranda, J.M., 2003, A study of the electric field distribution in erythrocyte and rod shape cells from direct RF exposure, Phys. Med. Biol. 48, 1649–59. 40) Pal, S., Balasubramanian, S. and Bagchi, B., 2003, Dynamics of bound and free water in an aqueous micellar solution: analysis of the lifetime and vibrational frequencies of hydrogen bonds at a complex interface, Phys. Rev. E 67, 061502 (10). 41) Pastushenko, V.Ph,, Kuzmin, P.I. and Chizmadshev, Yu A., 1985, Dielectrophoresis and electrorotation: a unified theory of spherically symmetrical cells, Stud. Biophys. 110, 51–7. 42) Pennock, B.E. and Schwan, H.P., 1969, Further observations on the electrical properties of hemoglobin-bound water, J. Phys. Chem. 73, 2600–10. 43) Pethig, R. and Kell, D., 1987, The passive electric properties of biological systems: their significance in physiology, biophysics and biotechnology, Phys. Med. Biol. 32, 933–70. 44) Rand, R.P. and Burton, A.C., 1964. Mechanical properties of the red cell membrane: I. Membrane stiffness and intracellular pressure, Biophys. J. 4, 115–35. 45) Sanchis, A., Giner, V., Sancho, M., Martínez, G., Sebastián, J.L. and Muñoz, S.M., 2003, Application of a BEM technique to the computation of dielectrophoretic forces on cells, Advances in Boundary Element Techniques, ed R. Gallego and M.H. Aliabadi, pp 421–6. 46) Saulis, G., 2005, The loading of human erythrocytes with small molecules by electroporation, Cell. Mol. Biol. Lett. 10, 23–35. 47) Schwan, H.P., 1957, Electrical properties of tissue and cell suspensions, Adv. Biol. Med. Phys. 5, 147–209. 48) Schwan, H.P., 1983, Electrical properties of blood and its constituents: alternating current spectroscopy, Ann. Hematol. 46, 185–97. 49) Sebastián, J.L., Muñoz, S.M., Sancho, M. and Miranda, J.M., 2001, Analysis of the influence of the cell geometry, orientation and cell proximity effects on the electric field distribution from direct RF exposure, Phys. Med. Biol. 46, 213–25. 50) Sebastián, J.L., Muñoz, S.M., Sancho, M. and Miranda, J.M., 2004, Modelling the internal field distribution in human erythrocytes exposed to MW radiation, Bioelectrochemistry 64, 39–45. 51) Sebastián, J.L., Muñoz, S.M., Sancho,M. and Miranda, J.M., 2006, Analysis of the electric field induced forces in erythrocyte membrane pores using a realistic cell model, Phys. Med. Biol. 51, 6213–24. 52) Simeonova, M. and Gimsa, J., 2006, The influence of the molecular structure of lipid membranes on the electric field distribution and energy absorption, Bioelectromagnetics 27, 652–66. 53) Simeonova, M., Wachner, D. and Gimsa, J., 2002, Cellular absorption of electric field energy: influence of molecular properties of the cytoplasm, Bioelectrochemistry 56, 215–8. 54) Stern, H.A. and Feller, S.E., 2003, Calculation of the dielectric permittivity profile of nonuniform system: application to a lipid bilayer simulation, J. Chem. Phys. 118, 3401–12. 55) Sukhorukov, V.L., Meedt, G., Kürschner, M. and Zimmermann, U., 2001, A single-shell model for biological cells extended to account for the dielectric anisotropy of the plasma membrane, J. Electrostat. 50, 191–204. 56) Turin, L., Béhé, P., Plonsky, I. and Dunina-Barkovskaya, A., 1991, Hydrophobic ion transfer between membranes of adjacent hepatocytes: a possible probe of tight junction structure, Proc. Natl Acad. Sci. USA 88, 9365–9. 57) Wachner, D., Simeonova,M. and Gimsa, J., 2002, Cellular absorption of electric field energy: equations for a single shape model of the general ellipsoidal shape, Bioelectrochemistry 56, 211–3.
Collections