Publication:
Growth and characterization of mn doped SnO_2 nanowires, nanobelts, and microplates

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2013-05-02
Authors
Herrera, Manuel
Piqueras de Noriega, Javier
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Amer Chemical Soc
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Undoped and Mn doped SnO_2 nanowires, nanobelts, and microplates have been grown by a thermal evaporation method that enables the morphology and the Mn content in the structures to be controlled. The structural and morphological characterization was carried out by scanning and transmission electron microscopy (SEM and TEM) and electron backscattered diffraction (EBSD). A crystallographic model has been proposed to describe the SnO2:Mn microplates. X-ray photoelectron spectroscopy (XPS) and energy dispersive spectroscopy (EDS) demonstrated the incorporation of Mn into the SnO2 lattice in concentrations up to 1.6 at % depending on the thermal treatment employed for the growth of the structures. Variations in the luminescence of the doped nanostructures as a function of the Mn content have been studied. A correlation between facets of the SnO_2:Mn microplates, identified by EBSD, with higher Mn content, and the increase of the luminescence emissions associated to, oxygen vacancies related defects was demonstrated.
Description
© 2013 American Chemical Society. This work was supported by MICINN (Projects MAT-2009-07882, MAT-2012-31959, and CSD-2009-00013). M.H. is thankful for the financial support from PASPA-UNAM and Conacyt 102519 project. We thank M. Amatti and L. Gregoratti for their help during the XPS measurements.
Unesco subjects
Keywords
Citation
(1) Yin, X, M.; Li, C. C.; Zhang, M.; Hao, Q. Y.; Liu, S.; Li, Q. H.; Chen, L. B.; Wang, T. H. Nanotechnology 2009, 20, 455503. (2) Sambhaji, S. B.; Gauri, A. T.; Arif, V. S.; Oh-Shim, J.; Myung-Mo, S.; Rajaram, S. M.; Anil, V. G.; Sung-Hwan, H. Mater. Lett. 2012, 79, 29. (3) Cannella, G.; Principato, F.; Foti, M.; Di Marco, S.; Grasso, A.; Lombardo, S. J. Appl. Phys. 2011, 110, 024502. (4) Zhang, S-G.; Yin, S-F.; Wei, Y-D.; Luo, S-L.; Au, C-T. Catal. Lett. 2012, 142, 608. (5) Fitzgerald, C. B.; Venkatesan, M.; Dorneles, L. S.; Gunning, R.; Stamenov, P.; Coey, J. M. D.; Stampe, P. A.; Kennedy, R. J.; Moreira, E. C.; Sias, U. S. Phys. Rev. B 2006, 74, 115307. (6) Espinosa, A.; García-Hernández, M.; Menéndez, N.; Prieto, C.; De-Andrés, A. Phys Rev B 2010, 81, 064419. (7) Prellier, W.; Fouchet, A.; Mercey, B. J. Phys.: Condens. Matter 2003, 15, R1583. (8) Long, R.; English, N. J. Phys. Lett. A 2009, 374, 319. (9) Wang, C.; Wu, Q.; Ge, H. L.; Shang, T.; Jiang, J. Z. Nanotechnology 2012, 23, 075704. (10) Nomura, K.; Okabayashi, J.; Okamura, K.; Yamada, Y. J. Appl. Phys. 2011, 110, 083901. (11) Zhang, L.; Ge, S.; Zuo, Y.; Zhang, B.; Xi, L. J. Phys. Chem. C 2010, 114, 7541. (12) Lee, C-H.; Nam, B-A.; Choi, W-K.; Lee, J. K.; Choi, D-J.; Oh, YJ. Mater. Lett. 2011, 65, 722. (13) Xiao, Y.; Ge, S.; Xi, L.; Zuo, Y.; Zhou, X.; Zhang, B.; Zhang, L.; Li, C.; Han, X.; Wen, Z. Appl. Surf. Sci. 2008, 254, 7459. (14) Chang, J.; Mironov, V. L.; Gribkov, B. A.; Fraerman, A. A.; Gusev, S. A.; Vdovichev, S. N. J. Appl. Phys. 2006, 100, 104304. (15) Chi, J.; Ge, H.; Wang, J.; Zuo, Y.; Zhang, L. J. Appl. Phys. 2011, 110, 83907. (16) Huang, L.; Pu, L.; Shi, Y.; Zhang, R.; Gu, B.; Du, Y.; Wright, S. Appl. Phys. Lett. 2005, 87, 163124. (17) Wu, J.; Yu, K.; Li, L.; Xu, J.; Shang, D.; Xu, Y.; Zhu, Z. J. Phys. D: Appl. Phys. 2008, 41, 185302. (18) Chen, Y. X.; Campbell, L. J.; Zhou, W. L. J. Cryst. Growth 2004, 270, 505. (19) Jiang, X.; Zhang, L.; Wang, T.; Wan, Q. J. Appl. Phys. 2009, 106, 104316. (20) Ross, F. Rep. Prog. Phys. 2010, 73, 114501. (21) Dai, Z. R.; Pan, Z. W.; Wang, Z. L. Solid State Commun. 2001, 118, 351−354. (22) Luo, S.; Fan, J.; Liu, W.; Zhang, M.; Song, Z.; Lin, C.; Wu, X.; Chu, P. K. Nanotechnology 2006, 17, 1695. (23) Kim, S.; Lim, T.; Ju, S. Nanotechnology 2011, 22, 305704. (24) Maestre, D.; Cremades, A.; Piqueras, J. J. Appl. Phys. 2004, 95, 3027. (25) Luo, S.; Chu, P. K.; Liu, W.; Zhang, M.; Lin, C. Appl. Phys. Lett. 2006, 88, 183112. (26) Chen, H. T.; Xiong, S. J.; Wu, X. L.; Zhu, J.; Shen, J. C.; Chu, P. K. Nano Lett. 2009, 9, 1926. (27) Zhou, X. T.; Heigl, F.; Murphy, M. W.; Sham, T. K. Apppl. Phys. Lett. 2006, 89, 213109. (28) Shuang, D.; Zhu, X. X.; Wang, J. B.; Zhong, Z. L.; Huang, G. J.; He, C. Appl. Surf. Sci. 2011, 257, 6085−6088. (29) Pan, S. S.; Tian, Y. H.; Luo, Y. Y.; Zhang, Y. X.; Wang, S.; Li, G. H. Appl. Phys. Lett. 2010, 97, 221105. (30) Maestre, D.; Häussler, D.; Cremades, A.; Jäger, W.; Piqueras, J. J. 011, 115, 18083. (31) Ortega, Y.; Dieker, Ch.; Jäger, W.; Piqueras, J.; Fernández, P. Nanotechnology 2010, 21, 225604. (32) Yang, L. X.; Zhu, Y. J.; Tong, H.; Wang, W-W. Ultrason.Sonochem. 2007, 14, 259. (33) Gillot, B.; El-Guendouzi, M.; Laarj, M. Mater. Chem. Phys. 2001, 70, 54. (34) Maestre, D.; Martínez de Velasco, I.; Cremades, A.; Amati, M.; Piqueras, J. J. Phys. Chem. C 2010, 114, 11748. (35) Togo, A.; Oba, F.; Tanaka, I.; Tatsumi, K. Phys. Rev. B 2006, 74, 195128.
Collections