Publication:
Micro- and nanostructures of Sb_2O_3 grown by evaporation-deposition: self assembly phenomena, fractal and dendritic growth

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2012-08-15
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Science SA
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Sb_2O_3 micro- and nanostructures of the face centered cubic phase, have been grown by a catalyst free evaporation deposition method with powder of metallic Sb as precursor. Nanopyramids, octahedra and nanorods are the building blocks of complex structures. The aggregation process of single crystallites has been investigated and the formation of microspheres, triangular fractal-like arrangements and dendrite complexes was found to depend on the nature and temperature of the substrate. Luminescence properties and Raman spectra of the structures have been investigated. (C) 2012 Elsevier B.V. All rights reserved.
Description
©2012 Elsevier B.V. All rights reserved. This work has been supported by MICINN (Projects MAT 2009- 07882 and Consolider Ingenio CSD 2009-00013) and by BSCH-UCM (Project GR35-10A-910146).
Unesco subjects
Keywords
Citation
[1] Y. Zhang, G. Li, J. Zhang, L. Zhang, Nanotechnology 15 (2004) 762. [2] N.K. Sahoo, K.V.S.R. Apparao, Appl. Phys. A 63 (1996) 195. [3] T. Som, B. Karmakar, J. Non-Cryst. Solids 356 (2010) 987. [4] C. Svensonn, Acta Cryst. B 31 (1975) 2016. [5] C. Svensonn, Acta Cryst. B 30 (1974) 458. [6] R.G. Orman, D. Holland, J. Solid State Chem. 180 (2007) 2587. [7] Z.Deng, F. Tang, D.Chen, X.Meng, L. Cao, B. Zou, J.Phys. Chem. B 110 (2006) 18225. [8] Z. Deng, D. Chen, F. Tang, J. Ren, A.J. Muscat, Nano Res. 2 (2009) 151. [9] Q. Wang, S. Ge, Q. Shao, Y. Zhao, Phys. B 406 (2011) 731. [10] G. Fan, Z. Huang, C. Chai, D. Liao, Mater. Lett. 65 (2011) 1141. [11] C.H. Xu, S.Q. Shi, C. Surya, C.H. Woo, J. Mater. Sci. 42 (2007) 9855. [12] C. Ye, G. Wang, M. Kong, L. Zhang, J. Nanomater. 2006 (2006) 95670. [13] Y. Li, Y.X. Zhang, X.S. Fang, T.Y. Zhai, M.Y. Liao, H.Q. Wang, G.H. Li, Y. Koide, Y. Bando, D. Goldberg, Nanotechnology 22 (2011) 165704. [14] C. Czekalla, C. Sturm, R. Schmidt-Grund, B. Cao, M. Lorenz, M. Grundmann, Appl. Phys. Lett. 92 (2008) 241102. [15] H. Dong, S. Sun, L. Sun, W. Xie, L. Zhou, X. Shen, Z. Chen, Appl. Phys. Lett. 98 (2011) 011913. [16] W. Sierpinski, C.R. Acad. Sci. Paris 160 (1915) 302. [17] H. Brune, C. Romainczyk, H. Röder, K. Kern, Nature 369 (1994) 469. [18] Y. Sawada, A. Dougherty, J.P. Gollub, Phys. Rev. Lett. 56 (1986) 1260. [19] E.I. Voit, A.E. Panasenko, L.A. Zemnukhova, J. Struct. Chem. 50 (2009) 60. [20] G. Mestl, P. Ruíz, B. Delmon, H. Knözinger, J. Phys. Chem. 98 (1994) 11276. [21] N. Tigau, V. Ciupina, G. Prodan, J. Optoelectron. Adv. Mater. 8 (2006) 37.
Collections