Publication:
Resonant cavity modes in gallium oxide microwires

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2012-06-25
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Amer Inst Physics
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Fabry Perot resonant modes in the optical range 660-770 nm have been detected from single and coupled Cr doped gallium oxide microwires at room temperature. The luminescence is due to chromium ions and dominated by the broad band involving the T-4(2)-(4)A(2) transition, strongly coupled to phonons, which could be of interest in tunable lasers. The confinement of the emitted photons leads to resonant modes detected at both ends of the wires. The separation wavelength between maxima follows the Fabry-Perot dependence on the wire length and the group refractive index for the Ga2O3 microwires.
Description
©2012 American Institute of Physics. This work has been supported by MICINN through Projects MAT 2009-07882 and Consolider Ingenio CSD 2009-00013 and by BSCH-UCM (Project GR35-10A-910146).
Unesco subjects
Keywords
Citation
1 J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaler, P. D. Yang, and R. J. Saykally, Nature Mater. 1, 106 (2002). 2 S. Gradecak, F. Qian, Y. Li, H.-G. Park, and C. M. Lieber, Appl. Phys. Lett. 87, 173111 (2005). 3 B. Hua, J. Motohisa, Y. Ding, S. Hara, and T. Fukui, Appl. Phys. Lett. 91, 131112 (2007). 4 J. C. Johnson, H. Yan, P. Yang, and R. J. Sakally, J. Phys. Chem. B 107, 8816 (2003). 5 M. A. Zimmler, J. Bao, F. Capasso, S. Muller, and C. Ronning, Appl. Phys. Lett. 93, 051101 (2008). 6 X. Ye, H. Mao, J. Wang, and Z. Zhu, Appl. Phys. Lett. 99, 261112 (2011). 7 C. Czekalla, C. Sturm, R. Schmidt-Grund, B. Cao, M. Lorenz, and M. Grundmann, Appl. Phys. Lett. 92, 241102 (2008). 8 J. Li, S. Lee, Y. H. Ahn, J.-Y. Park, K. H. Koh, and K. H. Park, Appl. Phys. Lett. 92, 263102 (2008). 9 H. Dong, Z. Chen, L. Sun, J. Lu, W. Xie, H. Tan, C. Jagadish, and X. Shen, Appl. Phys. Lett. 94, 173115 (2009). 10 H. Dong, S. Sun, L. Sun, W. Xie, L. Zhou, X. Shen, and Z. Chen, Appl. Phys. Lett. 98, 011913 (2011). 11 R.-M. Ma, X.-L. Wei, L. Dai, S.-F. Liu, T. Chen. S. Yue, Z. Li, Q. Chen, and G. G. Qin, Nano Lett. 9, 2697 (2009). 12 Y. Xiao, C. Meng, X. Wu, and L. Tong, Appl. Phys. Lett. 99, 023109 (2011). 13 E. Nogales, B. Me´ndez, and J. Piqueras, Nanotechnology 19, 035713 (2008). 14 E. Nogales, J. A. Garcı´a, B. Me´ndez, and J. Piqueras, Appl. Phys. Lett. 91, 133108 (2007). 15 E. Nogales, B. Me´ndez, J. Piqueras, and J. A. García, Nanotechnology 21, 115201 (2009). 16 E. Nogales, J. A. Garcı´a, B. Me´ndez, and J. Piqueras, J. Appl. Phys. 101, 033517 (2007). 17 T. Voss, G. T. Svacha, S. Mu¨ ller, C. Ronning, D. Konjhodzic, F. Marlow, and E. Mazur, Nano Lett. 7, 3675 (2007). 18 X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, Nature (London) 421, 241 (2003). 19 M. Rebien, W. Henrion, M. Hong, J. P. Mannaerts, and M. Fleischer, Appl. Phys. Lett. 81, 250 (2002). 20 A. V. Maslov and C. Z. Ning, Appl. Phys. Lett. 83, 1237 (2003). 21 See supplementary material at http://dx.doi.org/10.1063/1.4732153 for x-ray microanalysis measurements.
Collections