Publication:
High-sensitive SPR sensing with Indium Nitride as a dielectric overlay of optical fibers

Research Projects
Organizational Units
Journal Issue
Abstract
In this work, an Indium Nitride (InN) dielectric overlay has been used to develop a surface plasmon resonance optical fiber sensor. Although InN is a very promising material in electronics industry, this is the first time that this kind of material is used for optical sensing. The obtained results show an improvement of the reliability and long term stability with respect to previous devices made with the same technology. More remarkably, the sensitivity increases up to 11,800 nm/RIU in the range of outer refractive indices between 1.415 and 1.429, the highest sensitivity achieved with this kind of devices. Therefore, a novel application of the InN to optical fiber sensors is demonstrated. The use of this material would be of great interest to produce new SPR-based devices for chemical and biological sensing.
Description
© 2011 Elsevier B.V. This work has been partially supported by Spanish Ministry of Science research projects SPRINT (reference TQ2009-10550) and FASTCOM (reference TEC2009-14423-C02-02), by Community of Madrid project FACTOTEM II (reference S2009/ESP-1781) and by the European Social Fund and the European Fund for Regional Development.
Keywords
Citation
[1] J. Homola, Surface plasmon resonance sensors for detection of chemical and biological species, Chem. Rev. 108 (2008) 462–493. [2] X. Fan, I.M. White, S.I. Shopova, H. Zhu, J.D. Suter, Y. Sun, Sensitive optical biosensors for unlabeled targets: a review, Anal. Chim. Acta 620 (2008) 8–26. [3] I. Abdulhalim, M. Zourob, A. Lakhtakia, Surface plasmon resonance for biosensing: a mini-review, Electromagnetics 28 (2008) 214–242. [4] R. Micheletto, K. Hamamoto, S. Kawai, Y. Kawakami, Modeling and test of fiberoptics fast SPR sensor for biological investigation, Sens. Actuator A 119 (2005) 283–290. [5] D.K. Kambhampati, W. Knoll, Surface-plasmon optical techniques, Curr. Opin. Coll. Interface Sci. 4 (1999) 273–280. [6] A.J. Haes, R.P. Van Duyne, A unified view of propagating and localized surface plasmon resonance biosensors, Anal. Bioanal. Chem. 379 (2004) 920–930. [7] Yong-Jun Li, Juan Xiang, Feimeng Zhou, Sensitive and label-free detection of DNA by surface plasmon resonance, Plasmonics 2 (2007) 79–87. [8] S. Ahl, P.J. Cameron, W. Jing Liu, J. Knoll, Erlebacher, Fang Yu, A comparative plasmonic study of nanoporous and evaporated gold films, Plasmonics 3 (2008) 13–20. [9] N. Díaz-Herrera, Ó. Esteban, M.C. Navarrete, M. Le Haitre, A. González-Cano, In situ salinity measurements in seawater with a fibre-optic probe, Meas. Sci. Technol. 17 (2006) 2227–2232. [10] Y.S. Dwivedi, A.K. Sharma, B.D. Gupta, Influence of design parameters on the performance of a surface plasmon sensor based fiber optic sensor, Plasmonics 3 (2008) 79–86. [11] M. Piliarik, J. Homola, Z. Manikova, J. Čtyroký, Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber, Sens. Actuator B 90 (2003) 236–242. [12] S. Tseng, K. Hsu, H. Way, K. Chen, Analysis and experiment of thin metalclad fiber polarizer wave index overlay, IEEE Photon. Technol. Lett. 9 (1997) 628–630. [13] J. Čtyroký, J. Homola, M. Skalský , Tuning of spectral operation range of a waveguide surface plasmon resonance sensor, Electron. Lett. 33 (1997) 1246–1248. [14] R. Alonso, F. Villuendas, J. Tornos, J. Pelayo, New in-line optical-fibre sensor basedon surface plasmon resonance excitation, Sens. Actuator A 37-38 (1993) 187–192. [15] A. González-Cano, F.J. Bueno, Ó. Esteban, N. Díaz-Herrera, M.C. Navarrete, Multiple surface-plasmon resonance in uniform-waist tapered optical fibers with an asymmetric doublelayer deposition, Appl. Opt. 44 (2005) 519–526. [16] Ó. Esteban, N. Díaz-Herrera, M.C. Navarrete, A. González-Cano, Surface plasmon resonance sensors based on uniform-waist tapered fibers in a reflective configuration, Appl. Opt. 45 (2006) 7294–7298. [17] F.J. Bueno, Ó. Esteban, N. Díaz-Herrera, M.C. Navarrete, A. González-Cano, Sensing properties of asymmetric double-layer covered tapered fibers, Appl. Opt. 43 (2004) 1615–1620. [18] M.C. Navarrete, N. Díaz-Herrera, A. González-Cano, Ó. Esteban, A polarizationindependent SPR fiber sensor, Plasmonics 5 (2010) 7–12. [19] A. Díez, M.V. Andrés, J.L. Cruz, In-line fiber-optic sensors based on the excitation of surface plasma modes in metal-coated tapered fibers, Sens. Actuator B 73 (2001) 95–99. [20] J. Villatoro, D. Monzón-Hernández, E. Mejía, Fabrication and modeling of uniform-waist single-mode tapered optical fiber sensors, Appl. Opt. 42 (2003) 2278–2283. [21] D. Monzón-Hernández, J. Villatoro, High-resolution refractive index sensing by means of a multiple-peak surface plasmon resonance optical fiber sensor, Sens. Actuator B 115 (2006) 227–231. [22] N. Díaz-Herrera, A. González-Cano, D. Viegas, J.L. Santos, M.C. Navarrete, Refractive index sensing of aqueous media based on plasmonic resonance in tapered optical fibres operating in the 1.5 μm region, Sens. Actuator B 146 (2010) 195–198. [23] Ó. Esteban, M.C. Navarrete, A. González-Cano, E. Bernabeu, Simple model of compound waveguide structures used as fiber-optic sensors, Opt. Lasers Eng. 33 (2000) 219–230. [24] Ó. Esteban, R. Alonso, M.C. Navarrete, A. González-Cano, Surface plasmon excitation in fiber-optic sensors: a novel theoretical approach, IEEE J. Light. Technol. 20 (2002) 448–453. [25] Ó. Esteban, M.C. Navarrete, A. González-Cano, Theoretical method for the study of plasmon generation in hybrid multilayer-optical fibre structures, IEEE Sens. J. 5 (2005) 53–58. [26] B.D. Gupta, A.K. Sharma, Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study, Sens. Actuator B 107 (2005) 40–46. [27] H. Lu, W.J. Schaff, L.F. Eastman, Surface chemical modification of InN sensor applications, J. Appl. Phys. 96 (2004) 3577–3579. [28] N. Chaniotakis, N. Sofikiti, Novel semiconductor materials for the development of chemical sensors and biosensors: a review, Anal. Chim. Acta 615 (2008) 1–9. [29] A. Terentjev, G. Cicero, A. Catellani, First-principles investigations of InN nonpolar surface unctionalization, J. Phys. Chem. C113 (2009) 11323–11328. [30] Chi-Fan Chen, Chung-Lin Wu, Shangjr Gwo, Organosilane functionalization of InN surface, Appl. Phys. Lett. 89 (2006) 252109. [31] J. Wu, When group-III nitrides go infrared: new properties and perspectives, J. Appl. Phys. 106 (2009) 011101. [32] S. Valdueza-Felip, F.B. Naranjo, M. González-Herráez, L. Lahourcade, E. Monroy, S. Fernández, Influence of deposition conditions on nanocrystalline InN layers synthesized on Si(1 1 1) and GaN templates by RF sputtering, J. Cryst. Growth 319 (2010) 2689–2694. [33] R. Slavík, J. Homola, Ultrahigh resolution long range surface plasmon-based sensor, Sens. Actuator B 123 (2007) 10–12. [34] O. Ambacher, Growth and applications of group III-nitrides, J. Phys. D: Appl. Phys. 31 (1998), 2653-. [35] S. Sharma, P.B. Patel, R.S. Patel, J.J. Vora, Density and comparative refractive index study on mixing properties of binary liquid mixtures of eucalyptol with hydrocarbons at 303.15, 308. 15 and 313. 15 K, E-J. Chem. 4 (2007) 343– 349. [36] http://refractiveindex.info/. [37] N. Díaz-Herrera, A. González-Cano, D. Viegas, J.L. Santos, M.C. Navarrete, Ó. Esteban, Moving the wavelength detection range in surface plasmon resonance sensors based on tapered optical fibers, Proc. SPIE 7653 (2010) 76531F. [38] J. Homola, On the sensitivity of surface plasmon resonance sensors with spectral interrogation, Sens. Actuator B 41 (1997) 207–211. [39] B. Brian, B. Sepúlveda, Y. Alaverdyan, L.M. Lechuga, Sensitivity enhancement of nanoplasmonic sensors in low refractive index substrates, Opt. Exp. 17 (2009) 2015–2023.
Collections