Publication:
Thermodynamic properties of the fluid, fcc, and bcc phases of monodisperse charge-stabilized colloidal suspensions within the Yukawa model

Loading...
Thumbnail Image
Full text at PDC
Publication Date
1992-09-15
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The thermodynamic properties of the Yukawa model for colloidal suspensions are determined theoretically from the Rogers-Young integral equation for the fluid phase and from a recently introduced van der Waals-like theory for the solid phases. Very good agreement with the Monte Carlo simulations of Meijer and Frenkel [J. Chem. Phys. 94, 2269 (1991)] is found for both the fluid and the (fcc-bcc) solid phases. The location of the two-phase coexistences, however, is shown to involve such small free-energy and density changes that no definite statements about the phase diagram are possible within the present accuracy.
Description
© 1992 The American Physical Society. We thank E. J. Meijer for sending us his unpublished simulation data. C. F. T. wishes to thank the Dirección General de Investigatión Científica y Técnica (Spain) (PB88-0140) for the financial support. M. B. acknowledges financial support from the Fonds National de la Recherche Scientifique.
UCM subjects
Unesco subjects
Keywords
Citation
[1] See S. Hachisu, Y. Kobayashi, and A. Kose, J. Colloid Interface Sci. 42, 342 (1973); Y. Monovoukas and A. Gast, ibid. 128, 53 (1989); T. Okubo, J. Chem. Phys. 95, 3690 (1991),and references therein. [2] See M. O. Robbins, K. Kremer, and G. G. Grest, J. Chem. Phys. 88, 3286 (1988); D. Thirumalai, J. Phys. Chem. 93, 5637 (1989); E. J. Meijer and D. Frenkel, J. Chem. Phys. 94, 2269 (1991),and references therein. [3] See B. B. Laird and D. M. Kroll, Phys. Rev. A 42, 4810 (1990); S. Sengupta and A. K. Sook, ibid. 44, 1233 (1991); P. Salgi and R. Rajagopalan, Langmuir (to be published). [4] E. J. Meijer and D. Frenkel, see Ref. [2]; and (private communication). [5] F. J. Rogers and D. A. Young, Phys. Rev. A 30, 999 (1984). [6] J. F. Lutsko and M. Baus, J. Phys. Condens. Matter 3, 6547 (1991). [7] G. Zerah and J. P. Hansen, J. Chem. Phys. 84, 2336 (1986). [8] M. J. Gillan, Mol. Phys. 38, 1781 (1979). [9] J. F. Lutsko and M. Baus, Phys. Rev. A 41, 6647 (1990). [10] J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys. 54, 5237 (1971). [11] L. Verlet and J. J. Weis, Phys. Rev. A 5, 939 (1972). [12] J. A. Barker and D. Henderson, J. Chem. Phys. 47, 4714 (1967). [13] H. S. Kang, S. Lee, T. Ree, and F. H. Ree, J. Chem. Phys. 82, 414 (1985). [14] J. Medeiros e Silva and B. J. Mokross, Phys. Rev. B 21, 2972 (1980). [15] M. Baus and J. L. Colot, Phys. Rev. A 36, 3912 (1987).
Collections