Publication:
Enhanced dynamic annealing and optical activation of Eu implanted a-plane GaN

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2012-03
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
EPL Association, European Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The implantation damage build-up and optical activation of a-plane and c-plane GaN epitaxial films were compared upon 300 keV Eu implantation at room temperature. The implantation defects cause an expansion of the lattice normal to the surface, i.e. along the a-direction in a-plane and along the c-direction in c-plane GaN. The defect profile is bimodal with a pronounced surface damage peak and a second damage peak deeper in the bulk of the samples in both cases. For both surface orientations, the bulk damage saturates for high fluences. Interestingly, the saturation level for a-plane GaN is nearly three times lower than that for c-plane material suggesting very efficient dynamic annealing and strong resistance to radiation. a-plane GaN also shows superior damage recovery during post-implant annealing compared to c-plane GaN. For the lowest fluence, damage in a-plane GaN was fully removed and strong Eu-related red luminescence is observed. Although some residual damage remained after annealing for higher fluences as well as in all c-plane samples, optical activation was achieved in all samples revealing the red emission lines due to the ^5Do -> ^7F_2transition in the Eu_3+ ion. The presented results demonstrate a great promise for the use of ion beam processing for a-plane GaN based electronic devices as well as for the development of radiation tolerant electronics.
Description
Copyright c EPLA, 2012. Financial support by FCT Portugal (Ciência 2007, PTDC/CTM/100756/2008) and through the bilateral Spanish-Portuguese project HP-2008-0071 is gratefully acknowledged.
Unesco subjects
Keywords
Citation
[1] O’Donnell K. P. and Dierolf V. (Editors), Rare-Earth Doped III-Nitrides for Optoelectronic and Spintronic Applications (Spinger, Dordrecht) 2010. [2] Nishikawa A., Kawasaki T., Furukawa N., Terai Y. and Fujiwara Y., Appl. Phys. Express, 2 (2009) 071004. [3] Hite J., Thaler G. T., Khanna R., Abernathy C. R., Pearton S. J., Park J. H., Steckl A. J. and Zavada J. M., Appl. Phys. Lett., 89 (2006) 132119. [4] Kucheyev S. O., Williams J. S. and Pearton S. J., Mater. Sci. Eng. R, 33 (2001) 51. [5] Roqan I. S., O’Donnell K. P., Martin R. W., Edwards P. R., Song S. F., Vantomme A., Lorenz K., Alves E. and Bockowski M., Phys. Rev. B, 81 (2010) 085209. [6] Lorenz K., Alves E., Roqan I. S., O’Donnell K. P., Nishikawa A., Fujiwara Y. and Bo´ckowski M., Appl. Phys. Lett., 97 (2010) 111911. [7] Pipeleers B., Hogg S. M. and Vantomme A., J. Appl. Phys., 98 (2005) 123504. [8] Lorenz K., Barradas N. P., Alves E., Roqan I. S., Nogales E., Martin R. W., O’Donnell K. P., Gloux F. and Ruterana P., J. Phys. D: Appl. Phys., 42 (2009) 165103. [9] Speck J. S. and Chichibu S. F. (Guest Editors), MRS Bull., 34 (2009) 304. [10] Sun L., Yan F., Zhang H., Wang J., Zeng Y., Wang G. and Li J., J. Appl. Phys., 106 (2009) 113921. [11] Sun L., Yan F., Gao H., Zhang H., Zeng Y., Wang G. and Li J., J. Phys. D: Appl. Phys., 41 (2008) 165004. [12] Barradas N. P., Jeynes C. and Webb R. P., Appl. Phys. Lett., 71 (1997) 291. [13] Gärtner K., Nucl. Instrum. Methods Phys. Res. B, 227 (2005) 522. [14] Danilchenko B. A., Paszkiewicz T., Wolski S., Je´zowski A. and Plackowski T., Appl. Phys. Lett., 89, (2006) 061901. [15] Wetzel C., Wernicke T., Zeimer U., Brunner F., Weyers M. and Kneissl M., J. Cryst. Growth, 310 (2008) 8. [16] Jiang W., Weber W. J. and Thevuthasan S., J. Appl. Phys., 87 (2000) 7671. [17] Lorenz K., Wahl U., Alves E., Wojtowicz T., Ruterana P., Ruffenach S. and Briot O., Superlattices Microstruct., 36 (2004) 737. [18] Ruterana P., Lacroix B. and Lorenz K., J. Appl. Phys., 109 (2011) 013506. [19] Ziegler F., Biersack J. P. and Littmark U., The Stopping and Range of Ions in Solids (Pergamon, New York) 1985. [20] Wendler E., Wesch W., Alves E. and Kamarou A., Nucl. Instrum. Methods Phys. Res. B, 218 (2004) 36. [21] Xiao H. Y., Gao F., Zu X. T. and Weber W. J., J. Appl. Phys., 105 (2009) 123527. [22] Usov I. O., Arendt P. N., Groves J. R., Stan L. and DePaula R., Nucl. Instrum. Methods Phys. Res. B, 240 (2005) 661. [23] Lacroix B., Leclerc S., Decl´emy A., Lorenz K., Alves E. and Ruterana P., EPL, 96 (2011) 46002. [24] Liu C., Mensching B., Volz K. and Rauschenbach B., Appl. Phys. Lett., 71 (1997) 2313. [25] Lorenz K., Peres M., Franco N., Marques J. G., Miranda S. M. C., Magalh ães S., Monteiro T., Wesch W., Alves E. and Wendler E., Proc. SPIE, 7940 (2011) 79400O. [26] Geruschke T., Vianden R. and Lorenz K., unpublished. [27] Hao R., Zhu T., H¨aberlen M., Chang T. Y., Kappers M. J., Oliver R. A., Humphreys C. J. and Moram M. A., J. Cryst. Growth, 312 (2010) 3536.
Collections