Publication:
Enhanced dynamic annealing and optical activation of Eu implanted a-plane GaN

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2012-03
Authors
Catarino, N.
Franco, N.
Darakchieva, V.
Miranda, S.M.C.
Méndez Martín, Bianchi
Alves, E.
Marques, J.F.
Lorenz, K.
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
EPL Association, European Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The implantation damage build-up and optical activation of a-plane and c-plane GaN epitaxial films were compared upon 300 keV Eu implantation at room temperature. The implantation defects cause an expansion of the lattice normal to the surface, i.e. along the a-direction in a-plane and along the c-direction in c-plane GaN. The defect profile is bimodal with a pronounced surface damage peak and a second damage peak deeper in the bulk of the samples in both cases. For both surface orientations, the bulk damage saturates for high fluences. Interestingly, the saturation level for a-plane GaN is nearly three times lower than that for c-plane material suggesting very efficient dynamic annealing and strong resistance to radiation. a-plane GaN also shows superior damage recovery during post-implant annealing compared to c-plane GaN. For the lowest fluence, damage in a-plane GaN was fully removed and strong Eu-related red luminescence is observed. Although some residual damage remained after annealing for higher fluences as well as in all c-plane samples, optical activation was achieved in all samples revealing the red emission lines due to the ^5Do -> ^7F_2transition in the Eu_3+ ion. The presented results demonstrate a great promise for the use of ion beam processing for a-plane GaN based electronic devices as well as for the development of radiation tolerant electronics.
Description
Copyright c EPLA, 2012. Financial support by FCT Portugal (Ciência 2007, PTDC/CTM/100756/2008) and through the bilateral Spanish-Portuguese project HP-2008-0071 is gratefully acknowledged.
Unesco subjects
Keywords
Citation
[1] O’Donnell K. P. and Dierolf V. (Editors), Rare-Earth Doped III-Nitrides for Optoelectronic and Spintronic Applications (Spinger, Dordrecht) 2010. [2] Nishikawa A., Kawasaki T., Furukawa N., Terai Y. and Fujiwara Y., Appl. Phys. Express, 2 (2009) 071004. [3] Hite J., Thaler G. T., Khanna R., Abernathy C. R., Pearton S. J., Park J. H., Steckl A. J. and Zavada J. M., Appl. Phys. Lett., 89 (2006) 132119. [4] Kucheyev S. O., Williams J. S. and Pearton S. J., Mater. Sci. Eng. R, 33 (2001) 51. [5] Roqan I. S., O’Donnell K. P., Martin R. W., Edwards P. R., Song S. F., Vantomme A., Lorenz K., Alves E. and Bockowski M., Phys. Rev. B, 81 (2010) 085209. [6] Lorenz K., Alves E., Roqan I. S., O’Donnell K. P., Nishikawa A., Fujiwara Y. and Bo´ckowski M., Appl. Phys. Lett., 97 (2010) 111911. [7] Pipeleers B., Hogg S. M. and Vantomme A., J. Appl. Phys., 98 (2005) 123504. [8] Lorenz K., Barradas N. P., Alves E., Roqan I. S., Nogales E., Martin R. W., O’Donnell K. P., Gloux F. and Ruterana P., J. Phys. D: Appl. Phys., 42 (2009) 165103. [9] Speck J. S. and Chichibu S. F. (Guest Editors), MRS Bull., 34 (2009) 304. [10] Sun L., Yan F., Zhang H., Wang J., Zeng Y., Wang G. and Li J., J. Appl. Phys., 106 (2009) 113921. [11] Sun L., Yan F., Gao H., Zhang H., Zeng Y., Wang G. and Li J., J. Phys. D: Appl. Phys., 41 (2008) 165004. [12] Barradas N. P., Jeynes C. and Webb R. P., Appl. Phys. Lett., 71 (1997) 291. [13] Gärtner K., Nucl. Instrum. Methods Phys. Res. B, 227 (2005) 522. [14] Danilchenko B. A., Paszkiewicz T., Wolski S., Je´zowski A. and Plackowski T., Appl. Phys. Lett., 89, (2006) 061901. [15] Wetzel C., Wernicke T., Zeimer U., Brunner F., Weyers M. and Kneissl M., J. Cryst. Growth, 310 (2008) 8. [16] Jiang W., Weber W. J. and Thevuthasan S., J. Appl. Phys., 87 (2000) 7671. [17] Lorenz K., Wahl U., Alves E., Wojtowicz T., Ruterana P., Ruffenach S. and Briot O., Superlattices Microstruct., 36 (2004) 737. [18] Ruterana P., Lacroix B. and Lorenz K., J. Appl. Phys., 109 (2011) 013506. [19] Ziegler F., Biersack J. P. and Littmark U., The Stopping and Range of Ions in Solids (Pergamon, New York) 1985. [20] Wendler E., Wesch W., Alves E. and Kamarou A., Nucl. Instrum. Methods Phys. Res. B, 218 (2004) 36. [21] Xiao H. Y., Gao F., Zu X. T. and Weber W. J., J. Appl. Phys., 105 (2009) 123527. [22] Usov I. O., Arendt P. N., Groves J. R., Stan L. and DePaula R., Nucl. Instrum. Methods Phys. Res. B, 240 (2005) 661. [23] Lacroix B., Leclerc S., Decl´emy A., Lorenz K., Alves E. and Ruterana P., EPL, 96 (2011) 46002. [24] Liu C., Mensching B., Volz K. and Rauschenbach B., Appl. Phys. Lett., 71 (1997) 2313. [25] Lorenz K., Peres M., Franco N., Marques J. G., Miranda S. M. C., Magalh ães S., Monteiro T., Wesch W., Alves E. and Wendler E., Proc. SPIE, 7940 (2011) 79400O. [26] Geruschke T., Vianden R. and Lorenz K., unpublished. [27] Hao R., Zhu T., H¨aberlen M., Chang T. Y., Kappers M. J., Oliver R. A., Humphreys C. J. and Moram M. A., J. Cryst. Growth, 312 (2010) 3536.
Collections